6-Oxygenated flavones from *Baccharis trinervis* (Asteraceae)

Hazel Sharpa, Barbara Bartholomewa, Colin Brighta, Zahid Latifa, Satyajit D. Sarkerb,*, Robert J. Nashc

aMolecular Nature Limited, IGER, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
bPharmaceutical Sciences Section, School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, UK
cInstitute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK

Received 9 December 1999; accepted 14 February 2000

Keywords: *Baccharis trinervis*; Asteraceae; 5,7-Dihydroxy-6,4'-dimethoxyflavone; 5-Hydroxy-6,7,4'-trimethoxyflavone; 5,4'-Dihydroxy-3,6,7-trimethoxyflavone; Chemotaxonomy

1. Subject and source

Baccharis trinervis (Lam.) Pers. (Family: Asteraceae alt. Compositae), used in South American folk medicine as an antiseptic, digestive and to treat snake-bites (Duke, 1999), is widely distributed from Mexico to Argentina (USDA-ARS-GRIN database, 1999). Plant material was collected from Costa Rica and supplied by Biotics Limited, University of Sussex, Brighton, UK. A voucher specimen (MNL10118) has been maintained at the herbarium of the Institute of Grassland and Environmental Research (IGER), Aberystwyth, UK.

2. Previous work

Previous phytochemical studies on *B. trinervis* established the presence of flavones (Herrera et al., 1996; Arriaga-Giner et al., 1982) and neoclerodane type diterpenes...
(Kuroyanagi et al., 1993; Jakupovic et al., 1986). Antiviral activity (Abad et al., 1999), anti-inflammatory and antioxidant properties (de las Heras et al., 1998) of this plant have also been reported.

3. Present study

The CH$_2$Cl$_2$ extract of branches of B. trinervis (0.78 kg) was fractionated by Biotage$^\text{TM}$ 75 flash chromatography on silica gel using a step gradient of increasing polarity: n-hexane–EtOAc–MeOH with nine fractions of 1000 ml. Reversed phase preparative HPLC (C$_{18}$ preparative column, eluted with a gradient — water : acetonitrile : 0.1% TFA in acetonitrile = 60 : 30 : 10–0 : 90 : 10 in 25 min, 55 ml/min, detection at 210 nm) of the flash fraction 5 (40% EtOAc in n-hexane) has yielded 5,7-dihydroxy-6,4'-dimethoxyflavone, (pectolinarigenin, 1, 6.8 mg) (Hase et al., 1995), 5-Hydroxy-6,7,4'-trimethoxyflavone (salvigenin, 2, 35.0 mg) (Hertz and Gibaja, 1972; Talpatra et al., 1974; Xaasan et al., 1980) and 5,4'-dihydroxy-3,6,7-trimethoxyflavone (penduletin, 3, 1.1 mg) (Wang et al., 1989). Compounds 1 and 3 were further purified by reversed phase semi-preparative HPLC (C$_{18}$ semi-preparative column, eluted isocratically with the solvent mixture water: 0.1% TFA in MeOH = 30 : 70, 25 mL/min., detection at 210 nm). Structures of all these compounds have been determined on the basis of UV, 1H NMR, 13C NMR, HMBC, HMQC and LC-MS data, and direct comparison with the respective literature data. Unambiguous assignment of 13C NMR data for salvigenin (2) has been presented for the first time.

Salvigenin (2). 13C NMR (125 MHz, CDCl$_3$): δ 182.9 (C-4), 164.2 (C-2), 162.9 (C-4'), 159.0 (C-7), 153.4 (C-9), 153.3 (C-5), 133.0 (C-6), 128.2 (C-2', C-4'), 123.8 (C-1'), 114.7 (C-3', C-5'), 106.4 (C-10), 104.3 (C-3), 90.8 (C-8), 61.0 (6-OMe), 56.5 (7-OMe), 55.7 (4'-OMe).

4. Chemotaxonomic significance

The genus Baccharis is well-known for producing flavones (Kuroyanagi et al., 1985; Kupchan and Bauerschmidt, 1971; Dictionary of Natural Products, 1999). While
several other flavones have been reported from *B. trinervis* (Herrera et al., 1996; Arriaga-Giner et al., 1982), none of the compounds (1–3) has previously been isolated from this species. However, compounds 1–3 have been reported from other genera within the Asteraceae (alt. Compositae) and also from other plant families (Dictionary of Natural Products, 1999). As flavonoids are an important class of compounds for plant systematic and evolutionary studies, the chemotaxonomic importance of the flavonoids (1–3) reported here deserves consideration.

Acknowledgements

We thank David Thomas for his assistance with LC-MS data. BBSRC is thanked for partial financial support for purchasing BRUKER DRX500 NMR spectrometer.

References

Dictionary of Natural Products, 1999. CD-ROM Version 8:1, Chapman & Hall, Boca Raton, Fl. USA.
Hertz, W., Gibaja, S., 1972. Phytochemistry 11, 2625.