The first-order stochastic dominance ordering of the Singh–Maddala distribution

Stefan Klonner*

Südasien Institut der Universität Heidelberg, INF 330, 69120 Heidelberg, Germany

Received 3 June 1999; accepted 3 March 2000

Abstract

Given two distributions from the Singh–Maddala family, this paper investigates how to determine whether one distribution first-order stochastically dominates the other. The resulting criteria are also applied to the Dagum type I family of distributions. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Ranking income distributions; Singh–Maddala distribution; Inequality; Social welfare

JEL classification: C49; D31; D63

1. Introduction

The family of distributions proposed by Singh and Maddala (1976) has been a popular model for describing the distribution of income or consumption expenditure (see McDonald, 1984; Brachmann et al., 1996). The cumulative distribution function (cdf) is given by

\[F(x; a, b, q) = 1 - \left[1 + \left(\frac{x}{b}\right)^{a} \right]^{-q}. \]

In empirical applications, the parameters \(b, a \) and \(q \) are estimated to facilitate intertemporal or international comparisons of income distributions with a view to drawing conclusions about inequality and social welfare. Where inequality is concerned, comparisons are usually made using the Lorenz-ordering. For the Singh–Maddala family, Wilfling and Krämer (1993) have derived necessary and sufficient conditions to determine the Lorenz-ordering of two distributions in terms of the parameters \(a \) and \(q \). Since it is mean-free, however, the Lorenz-ordering does not provide an answer to the question which one of two distributions implies higher social welfare. If we focus on the subclass of

*Tel.: +6-221-548-754; fax: +6-221-545-596.
E-mail address: stefan.klonner@urz.uni-heidelberg.de (S. Klonner).
additively separable welfare functions satisfying monotonicity in each individual’s income, then a comparison with respect to social welfare will be equivalent to a comparison of the associated cdf’s with respect to first-order stochastic dominance (FSD). Moreover, FSD implies higher order stochastic dominance as well as generalized Lorenz-dominance (see Cowell, forthcoming) which is a central concept for comparing income distributions in many fields of economics.\footnote{See Lambert (1989) for an application to public finance.}

Distribution G is said to (weakly) first-order stochastically dominate H if, and only if, $G(x) \leq H(x)$ for all x (see Cowell, forthcoming). Although some distribution-free tests for FSD have been developed (see Schmid and Trede, 1996, for a recent example), virtually no attempts have been made to address this issue in the context of parametric distributions. This I shall attempt to do for the Singh–Maddala (SM) family.

As in the case of the Lorenz-ordering, the FSD ordering of distributions from the Singh–Maddala family is not complete, i.e. in many cases the cdf’s will intersect. Moreover, while for the Lorenz-ordering the scale parameter b plays no role, the FSD ordering will depend on all three parameters, rendering it impossible to give a set of closed form ‘if, and only if’ conditions.

2. Necessary and sufficient conditions for first-order stochastic dominance

Theorem 1 gives necessary conditions for first-order stochastic dominance.

Theorem 1. Let F_1 and F_2 be SM distribution functions, with parameters a_i, b_i and q_i ($i = 1, 2$), respectively. If F_1 first-order stochastically dominates F_2, then

(a) $a_1 \geq a_2$ and

(b) $a_1 q_1 \leq a_2 q_2$.

Proof. Define the family of strictly increasing functions $u_i(x) = x^{t_i}/t, t \neq 0$ and the corresponding family of additively separable social welfare functions $W_i(F) = \int u_i(x) dF(x) = \mu_i(F)/t$, where $\mu_i(F)$ denotes the rth moment associated with F. We further need the following representation of the rth moment of the SM family obtained by McDonald (1984):

$$\mu_i(F) = b^r \Gamma(1 + t/a) \Gamma(q - t/a)/\Gamma(q)$$

where $\Gamma(\cdot)$ denotes the complete gamma function.

(a) Assume that $a_1 < a_2$ and let t approach $-a_1$ from above. In this case, $(1 + t/a_1)$ will approach zero. Inspection of (2) and recalling that $\lim_{z \to 0} \Gamma(z) = \infty$ reveals that this implies that $W_i(F_1)$ will approach minus infinity, while $W_i(F_2)$ will approach a finite negative number. Thus for some $t' > -a_1$ we have $W_i(F_1) < W_i(F_2)$. Since $F_1(x) \leq F_2(x)$ for all x implies $W_i(F_1) \geq W_i(F_2)$ for all t (see Saposnik, 1981), $W_i(F_1) < W_i(F_2)$ contradicts $F_1 \leq F_2$.

(b) Assume that $a_1 q_1 > a_2 q_2$ and let t approach $a_2 q_2$ from below. Now the term $\Gamma(q_2 - t/a_2)$ and thus $W_i(F_2)$ will approach plus infinity, while $W_i(F_1)$ will approach a finite positive number. Thus for some $t^* < a_2 q_2$ we have $W_i(F_1) < W_i(F_2)$, which contradicts $F_1 \leq F_2$. QED
It is interesting to note that the necessary conditions given in Theorem 1 are in direct contrast to those for Lorenz-dominance obtained by Wilfling and Krämer (1993) who showed that \(F_1 \) Lorenz-dominates \(F_2 \) if, and only if, \(a_i \geq a_2 \) and \(a_i q_1 \geq a_2 q_2 \). Thus, if two distributions can be Lorenz-ordered, there will be no ordering according to FSD and vice versa. This is a serious drawback of the SM family since, in general, a distribution \(G \) can first-order and Lorenz-dominate a distribution \(H \) at the same time.

We state an inequality for sums introduced by Pringsheim (1902a,b; see also Hardy et al., 1952, Theorem 19) that will be needed for the proof of Theorem 2:

Lemma 1. For positive \(r, p \) and \(c_k \), \(k = 1, \ldots, n \), \((\Sigma_{k=1}^n c_k^r)^{1/r} \leq (\Sigma_{k=1}^n c_k^p)^{1/p} \) if, and only if, \(r \geq p \).

A set of sufficient conditions for first-order stochastic dominance is set out in:

Theorem 2. If \(a_1 \geq a_2 \), \(a_1 q_1 \leq a_2 q_2 \) and \(b_1 \geq b_2 \), then \(F_1 \) first-order stochastically dominates \(F_2 \).

Proof. For the SM family \(F_1 \leq F_2 \) is equivalent to

\[
(1 + (x/b_1)^{a_1})^{q_1} \leq (1 + (x/b_2)^{a_2})^{q_2}.
\]

Since \((1 + (x/b)^{a})^{q} \) is decreasing in \(b \) and increasing in \(q \) and, by hypothesis, \(b_1 \geq b_2 \) and \(a_1 q_1 \leq a_2 q_2 \), we have \((1 + (x/b_1)^{a_1})^{q_1} \leq (1 + (x/b_2)^{a_2})^{q_2} \). It thus suffices to show that \((1 + (x/b_2)^{a_2})^{q_2} \leq (1 + (x/b_2)^{a_2})^{q_2} \) which, after a change of variable, is equivalent to \((1 + z^{a_2})^{q_2} \leq (1 + z^{a_2})^{q_2} \) for all positive \(z \). That this holds for all \(0 < a_2 \leq a_1 \) follows at once from Lemma 1. QED

The next theorem covers the special cases where either (a) or (b) of Theorem 1 holds with equality and, as a third case, \(b_1 \geq b_2 \):

Theorem 3.

(a) Suppose \(a_1 = a_2 = a \). Then \(F_1 \) first-order stochastically dominates \(F_2 \) if, and only if, \(q_1 \leq q_2 \) and \(b_1 / b_2 = (q_1/q_2)^{1/a} \).

(b) Suppose \(a_1 q_1 = a_2 q_2 \). Then \(F_1 \) first-order stochastically dominates \(F_2 \) if, and only if, \(a_1 \geq a_2 \) and \(b_1 \geq b_2 \).

(c) Suppose \(b_1 \geq b_2 \). Then \(F_1 \) first-order stochastically dominates \(F_2 \) if, and only if, \(a_1 \geq a_2 \) and \(a_1 q_1 \leq a_2 q_2 \).

Proof. (a) In this case, after a change of variable, \(F_1 \leq F_2 \) is equivalent to \((1 + z)^{a_1/q_2} \leq (1 + b_1/b_2)^{a_2} \) for all positive \(z \). Clearly, this inequality will hold for all \(z \) if, and only if, \(q_1/q_2 \) is not bigger than unity and, for \(z = 0 \), the derivative of the left hand side is not bigger than the derivative of the right hand side. This latter condition is equivalent to \(b_1 / b_2 \geq (q_1/q_2)^{1/a} \).

(b) Necessity of \(a_1 \geq a_2 \) follows from Theorem 1. For the necessity of \(b_1 \geq b_2 \), rewrite \(F_1 \leq F_2 \) as \(b_2 / b_1 \leq (1 + (b_2 x)^{a_2})^{1/a_2} / (1 + (b_1 x)^{a_1})^{1/a_1} \). The right hand side of this inequality approaches unity for large \(x \). Thus \(b_2 / b_1 \geq 1 \) contradicts \(F_1 \leq F_2 \). Sufficiency follows from Theorem 2.

(c) Necessity follows from Theorem 1, sufficiency from Theorem 2. QED

In many cases, Theorems 1, 2 and 3 will not suffice to determine whether the cdf’s of two
Table 1

Values of $v(a_1/a_2, q_2/q_1)$

<table>
<thead>
<tr>
<th>a_1/a_2</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2</th>
<th>2.1</th>
<th>2.2</th>
<th>2.3</th>
<th>2.4</th>
<th>2.5</th>
<th>2.6</th>
<th>2.7</th>
<th>2.8</th>
<th>2.9</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_1/q_1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.10</td>
<td>1.20</td>
<td>1.30</td>
<td>1.40</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
<td>1.80</td>
<td>2.00</td>
<td>2.10</td>
<td>2.20</td>
<td>2.30</td>
<td>2.40</td>
<td>2.50</td>
<td>2.60</td>
<td>2.70</td>
<td>2.80</td>
<td>2.90</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>1.00</td>
<td>1.25</td>
<td>1.41</td>
<td>1.56</td>
<td>1.70</td>
<td>1.84</td>
<td>1.97</td>
<td>2.11</td>
<td>2.24</td>
<td>2.37</td>
<td>2.50</td>
<td>2.63</td>
<td>2.76</td>
<td>2.89</td>
<td>3.02</td>
<td>3.15</td>
<td>3.27</td>
<td>3.40</td>
<td>3.53</td>
<td>3.66</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.00</td>
<td>1.28</td>
<td>1.47</td>
<td>1.64</td>
<td>1.80</td>
<td>1.96</td>
<td>2.11</td>
<td>2.26</td>
<td>2.41</td>
<td>2.55</td>
<td>2.70</td>
<td>2.84</td>
<td>2.99</td>
<td>3.13</td>
<td>3.27</td>
<td>3.41</td>
<td>3.55</td>
<td>3.70</td>
<td>3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.00</td>
<td>1.28</td>
<td>1.49</td>
<td>1.67</td>
<td>1.84</td>
<td>2.01</td>
<td>2.17</td>
<td>2.32</td>
<td>2.48</td>
<td>2.63</td>
<td>2.78</td>
<td>2.93</td>
<td>3.08</td>
<td>3.23</td>
<td>3.38</td>
<td>3.53</td>
<td>3.68</td>
<td>3.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.00</td>
<td>1.28</td>
<td>1.49</td>
<td>1.67</td>
<td>1.85</td>
<td>2.01</td>
<td>2.18</td>
<td>2.34</td>
<td>2.49</td>
<td>2.65</td>
<td>2.80</td>
<td>2.96</td>
<td>3.11</td>
<td>3.26</td>
<td>3.41</td>
<td>3.56</td>
<td>3.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.00</td>
<td>1.27</td>
<td>1.47</td>
<td>1.66</td>
<td>1.83</td>
<td>2.00</td>
<td>2.16</td>
<td>2.32</td>
<td>2.48</td>
<td>2.63</td>
<td>2.79</td>
<td>2.94</td>
<td>3.09</td>
<td>3.24</td>
<td>3.39</td>
<td>3.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>1.00</td>
<td>1.26</td>
<td>1.46</td>
<td>1.64</td>
<td>1.81</td>
<td>1.98</td>
<td>2.14</td>
<td>2.29</td>
<td>2.45</td>
<td>2.60</td>
<td>2.75</td>
<td>2.90</td>
<td>3.05</td>
<td>3.20</td>
<td>3.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>1.00</td>
<td>1.25</td>
<td>1.44</td>
<td>1.62</td>
<td>1.79</td>
<td>1.95</td>
<td>2.10</td>
<td>2.26</td>
<td>2.41</td>
<td>2.56</td>
<td>2.70</td>
<td>2.85</td>
<td>3.00</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>1.00</td>
<td>1.24</td>
<td>1.43</td>
<td>1.60</td>
<td>1.76</td>
<td>1.91</td>
<td>2.07</td>
<td>2.22</td>
<td>2.36</td>
<td>2.51</td>
<td>2.65</td>
<td>2.79</td>
<td>2.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>1.00</td>
<td>1.23</td>
<td>1.41</td>
<td>1.57</td>
<td>1.73</td>
<td>1.88</td>
<td>2.03</td>
<td>2.17</td>
<td>2.32</td>
<td>2.46</td>
<td>2.60</td>
<td>2.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>1.22</td>
<td>1.39</td>
<td>1.55</td>
<td>1.70</td>
<td>1.85</td>
<td>1.99</td>
<td>2.13</td>
<td>2.27</td>
<td>2.41</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1.00</td>
<td>1.21</td>
<td>1.38</td>
<td>1.53</td>
<td>1.68</td>
<td>1.82</td>
<td>1.96</td>
<td>2.09</td>
<td>2.23</td>
<td>2.36</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>1.00</td>
<td>1.21</td>
<td>1.37</td>
<td>1.51</td>
<td>1.65</td>
<td>1.79</td>
<td>1.92</td>
<td>2.06</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>1.00</td>
<td>1.20</td>
<td>1.35</td>
<td>1.50</td>
<td>1.63</td>
<td>1.76</td>
<td>1.89</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>1.00</td>
<td>1.19</td>
<td>1.34</td>
<td>1.48</td>
<td>1.61</td>
<td>1.74</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1.00</td>
<td>1.18</td>
<td>1.33</td>
<td>1.46</td>
<td>1.59</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>1.00</td>
<td>1.18</td>
<td>1.32</td>
<td>1.45</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>1.00</td>
<td>1.17</td>
<td>1.31</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>1.00</td>
<td>1.17</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>1.00</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
distributions under comparison intersect or not, namely when conditions (a) and (b) of Theorem 1 both hold with strict inequality together with \(b_2 > b_1 \). Therefore I provide a table that, together with Theorem 1, fills this gap. First note that \(F_1 \leq F_2 \) is equivalent to
\[
(b_2/b_1)^{z^2} \leq z/(1 + z^{(a_1/a_2)q_1/q_2} - 1)
\] (4)
for all positive \(z \). Further, the necessary conditions of Theorem 1 can be written as
\[
1 \leq a_1/a_2 \leq q_2/q_1.
\] (5)
Table 1 therefore reports the minimum of the r.h.s. of (4) with respect to \(z, v(a_1/a_2, q_2/q_1) \), for pairs of \(a_1/a_2 \) and \(q_2/q_1 \) over a range that is sufficient for most applications and that satisfies (5). Thus, \(F_1 \) first-order stochastically dominates \(F_2 \) if, and only if, (a) and (b) of Theorem 1 hold and \((b_2/b_1)^{z^2} \leq v(a_1/a_2, q_2/q_1) \).

3. The Dagum type I family

The cdf of the Dagum type I model (Dagum, 1977) is given by
\[
G(x; \tilde{a}, \tilde{b}, \tilde{q}) = (1 + (\tilde{b}/x)^{\tilde{a}})^{-\tilde{q}}.
\]
A comparison of this with the SM family can be found in Kleiber (1996), who also obtained necessary and sufficient conditions for Lorenz-dominance.

Rearranging (3) together with a change of variable yields the following lemma.

Lemma 2. Let \(G_1 \) and \(G_2 \) be Dagum type I distribution functions with parameters \(\tilde{a}_i, \tilde{b}_i, \tilde{q}_i \) \((i=1,2) \), respectively, and define \(F(x; \tilde{a}, \tilde{b}, \tilde{q}) \) as in (1). Then \(G_1 \) first-order stochastically dominates \(G_2 \) if, and only if, \(F(x; \tilde{a}_2, 1/\tilde{b}_2, \tilde{q}_2) \) first-order stochastically dominates \(F(x; \tilde{a}_1, 1/\tilde{b}_1, \tilde{q}_1) \).

Thus all results obtained for the SM family in Section 2 can be applied to the Dagum type I family if we replace \(a_1, b_1 \) and \(q_1 \) by \(\tilde{a}_2, 1/\tilde{b}_2 \) and \(\tilde{q}_2 \), respectively, and \(a_2, b_2 \) and \(q_2 \) correspondingly.

Acknowledgements

I am indebted to Martin Biewen, Carsten Fink, Christian Kleiber, Ramona Schrepler and Bernd Wilfling for useful comments. Special thanks to Clive Bell for intensive ongoing discussions. The usual disclaimer applies.

References