Strategic complements and substitutes in bilateral oligopolies

Francis Blocha,*, Hélène Ferrerb

aIRES and CORE, Department of Economics, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
bCORE, Université Catholique de Louvain, Louvain-La-Neuve, Belgium

Received 4 January 2000; accepted 15 June 2000

Abstract

This paper characterizes the equilibrium of a bilateral oligopoly where traders have CES utility functions. We show that the offers of traders on the two sides of the market are strategic substitutes if and only if the goods are complements. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Bilateral oligopoly; Strategic substitutes and complements; CES utility functions

JEL classification: D43

1. Introduction

The strategic market games introduced by Shapley and Shubik (Shapley, 1976; Shubik, 1973) offer a simple description of an exchange economy where all traders behave strategically. A specific example of Shapley–Shubik games, recently introduced by Gabszewicz and Michel (1997), can be viewed as an extension of the Cournot oligopoly model, where both sides of the market (buyers and sellers) are strategic players. In this ‘bilateral oligopoly’, there are two types of traders and two commodities, and each type of trader is endowed with one unit of the two commodities and wants to consume both. General conditions for existence and uniqueness of an interior equilibrium have recently been studied by Bloch and Ghosal (1997) and Bloch and Ferrer (2000).

In this note, we investigate further the structure of bilateral oligopolies by analyzing the relation between product complementarity and the Nash equilibrium of the strategic market game, in the simple setting of a CES (constant elasticity of substitution) utility function. We show that the offers of traders on the two sides of the market are strategic complements (substitutes) if and only if the two

*Corresponding author. Tel.: +32-10-473-963; fax: +32-10-473-945.
\textit{E-mail address:} bloch@ires.ucl.ac.be (F. Bloch).
goods are substitutes (complements). Furthermore, we prove that the outcome of the game converges monotonically to the competitive equilibrium, as the elasticity of substitution between the goods decreases to zero.

2. The model

We consider an economy with two goods, labeled x and y, and two types of traders. There are $n \geq 2$ traders of type I (who are endowed with one unit of good x) and n traders of type II (who are endowed with one unit of good y). Preferences for the two types of traders are identical, and given by the CES utility function

$$U(x,y) = (x^\rho + y^\rho)^{1/\rho}, \text{ with } \rho \leq 1.$$

This utility function encompasses both situations where the goods are substitutes ($\rho > 0$) and complements ($\rho < 0$). When $\rho = 1$, the goods are perfect substitutes, when $\rho = 0$, the utility function is Cobb–Douglas, and when $\rho \to -\infty$, the goods are perfect complements. This exchange economy has a unique competitive equilibrium given by $p^* = (1,1)$ and $(x^*,y^*) = (1/2,1/2)$ for traders of types I and II.

We analyze a strategic market game where each trader offers a fraction of the commodity he owns on the market. Hence, the strategy spaces for the two types of traders are

$$S_I = \{q_i \in \mathbb{R} | 0 \leq q_i \leq 1\},$$

$$S_{II} = \{b_j \in \mathbb{R} | 0 \leq b_j \leq 1\}.$$

The final allocations obtained by the traders are given by

$$(x_i,y_i) = \left(1 - q_i, q_i \frac{\sum b_j}{\sum q_i}\right), \text{ for traders of type I},$$

$$(x_j,y_j) = \left(b_j \frac{\sum q_i}{\sum b_j}, 1 - b_j\right), \text{ for traders of type II},$$

with corresponding utility levels

$$U_i(x_i,y_i) = \left((1 - q_i)^\rho + \left(\frac{\sum b_j}{\sum q_i}\right)^\rho\right)^{1/\rho}.$$

\footnote{See Bulow et al. (1985) for the original definition of strategic substitutes and complements in traditional oligopoly models.}
3. The equilibrium

To compute the reaction functions of the two types of traders, we solve the maximization problem faced by agents of type I:

\[
\max_{0 \leq q, b} U(q, b).
\]

We obtain

\[
\frac{\partial U}{\partial q} = A(q) \cdot B(q),
\]

where

\[
A(q) = -(1 - q)^{\rho - 1} + \left(\sum b_j \right)^\rho \frac{\sum_{k \neq i} q_k}{(\sum q_i)^{\rho + 1}} q_i^{\rho - 1},
\]

\[
B(q) = \left[(1 - q)^{\rho} + \left(\frac{\sum b_j}{\sum q_i} \right)^\rho \right]^{(1/\rho) - 1} > 0.
\]

It is easy to check that the second-order conditions are satisfied, so that the maximization problem has a unique interior solution given by

\[
A(q) = \left[-(1 - q)^{\rho - 1} + \left(\sum b_j \right)^\rho \frac{\sum_{k \neq i} q_k}{(\sum q_i)^{\rho + 1}} q_i^{\rho - 1} \right] = 0.
\]

We use this reaction function to study whether offers of traders on the two sides of the market and on the same side of the market are strategic substitutes or complements.

Lemma 1. The offers of traders on the two sides of the market are strategic complements (substitutes) if and only if the goods are substitutes (complements). If the goods are complements, offers of traders on the same side of the market are strategic complements. If the goods are substitutes, offers of traders on the same side of the market are neither strategic complements nor strategic substitutes.

Proof. By implicit differentiation, we get

\[
\frac{\partial q_i}{\partial b_j} = \frac{-\rho(\sum b_j)\rho^{-1}[\sum_{k \neq i} q_k(\sum q_i)^{\rho + 1}]q_i^{\rho - 1}}{\partial A/\partial q_i}.
\]

Hence, \(\partial q_i/\partial b_j \geq 0 \) iff \(\rho \geq 0 \). Similarly, we compute
\[
\frac{\partial q_i}{\partial q_j} = - \frac{\sum b_j \rho (q_i - \rho \sum_{k \neq i} q_k) / (\sum q_k)^{\rho + 2} q_i^{\rho - 1}}{\partial A / \partial q_i}.
\]

The sign of \(\partial q_i / \partial q_j\) thus depends on the sign of \((q_i - \rho \sum_{k \neq i} q_k)\).

We now turn to the computation of the equilibrium. It is easy to see that the equilibrium has to be symmetric, i.e. all traders of the same type adopt the same strategy. Hence, we may denote by \(q\) and \(b\) the offers of traders of type I and type II on the market. The reaction functions are then given by

\[
\frac{\partial U_i}{\partial q_i} = -q(1 - q)^{\rho - 1} + \frac{(n - 1)}{n} b^\rho = 0, \tag{1}
\]

\[
\frac{\partial U_j}{\partial b_j} = -b(1 - b)^{\rho - 1} + \frac{(n - 1)}{n} q^\rho = 0.
\]

We can show that the system of equations (1) characterizes a unique symmetric Nash equilibrium, where all traders adopt the same strategy.\(^2\)

Proposition 1. The strategic market game has a unique interior Nash equilibrium. All traders adopt the same strategy:

\[
q^* = b^* = \frac{1}{[n/(n - 1)]^{1/(1 - \rho)} + 1}.
\]

Lemma 2. As the degree of substitution of the two goods increases the equilibrium offers \(q^*\) and \(b^*\) decrease.

Proof. We compute

\[
\frac{\partial b^*}{\partial \rho} = \frac{1}{(1 - \rho)} \left[\frac{\log[n/(n - 1)][n/(n - 1)]^{1/(1 - \rho)}}{\{1 + [n/(n - 1)]^{1/(1 - \rho)}\}^2} \right] < 0.
\]

We obtain for a linear utility function \((\rho \to 1)\) \(q^* = b^* = 0\), for a Cobb–Douglas utility function \((\rho = 0)\), \(q^* = b^* = (n - 1)/(2n - 1)\). As the goods become perfect complements \((\rho \to -\infty)\), \(q^* = b^* = 1/2\), the equilibrium outcome converges to the competitive equilibrium.

4. Discussion

In this note, we analyze the Nash equilibrium of a bilateral oligopoly when the degree of substitution between the two goods is parametrized by the constant elasticity of substitution \(1/(1 - \rho)\). We first show that the offers of traders on the two sides of the market are strategic substitutes (or complements) if and only if the goods are complements (substitutes). To understand this result, consider the behavior of an agent \(i\) of type I. If the offer \(b_j\) of agents of type II increases, the amount

\(^2\)The proof is available from the authors.
of good \(y \) in agent \(i \)'s allocation, \(y_i \), increases. If the two goods are substitutes, this decreases the marginal utility of \(x_i \) and induces trader \(i \) to increase her offer \(q_i \). If, on the other hand, the two goods are complements, this increases the marginal utility of \(x_i \) and induces trader \(i \) to reduce her offer. Note that this effect is not related to the traditional analysis of strategic substitutes and complements in oligopoly.

We also show that, as the complementary between the two goods increases, the equilibrium offers on the two sides of the market increase. The intuition underlying this result is easily grasped. When the complementarity increases, the marginal utility of good \(y \) to traders of type I increases. Hence, for any fixed offer \(b_j \) of traders of type II, the offer \(q_i \) increases. In equilibrium, both offers \(b_j \) and \(q_i \) are increasing with the degree of complementarity between goods.

Acknowledgements

We thank Jean J. Gabszewicz and Nicolas Boccard for discussions which led to improvements in the paper. The second author is grateful to the European Community for support through the Cooperation and Information Network, contract ERB FMRX CT 96 0055. This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the authors.

References