A comparison of stochastic models that reproduce chain ladder reserve estimates

Thomas Mack a,*; Gary Venter b

a Munich Re, Königinstr. 107, D-80791 München, Germany
b Guy Carpenter Instrat, Two World Trade Center, New York, NY 10048, USA

Received January 1999; received in revised form May 1999

Abstract

It is shown that the (over-dispersed) Poisson model is not the same as the distribution-free chain ladder model of Mack (Distribution-free calculation of the standard error of chain ladder reserve estimates, ASTIN Bulletin 23 (1993) 213–225) although both reproduce the historical chain ladder estimator for the claims reserve. For example, the true expected claims reserves, ignoring estimation issues, described by the two models are different. Moreover, the Poisson model deviates from the historical chain ladder algorithm in several aspects that the distribution-free chain ladder model does not. Therefore, only the latter can qualify to be referred to as the model underlying the chain ladder algorithm. ©2000 Elsevier Science B.V. All rights reserved.

Keywords: Chain ladder; Distribution-free model; Over-dispersed Poisson model

1. Overview of the two models

Let D_{ij} denote the cumulative losses for accident year $i = 1, \ldots, n$ and for age $j = 1, \ldots, n$. The loss amounts D_{ij} have been observed for $j \leq n + 1 - i$ whereas the other amounts, especially the ultimate amounts $D_{in}, i > 1$, have to be predicted. The chain ladder algorithm consists of the stepwise prediction rule:

$$
\hat{D}_{ij} = \hat{D}_{i,j-1} \hat{f}_j \quad \text{with} \quad \hat{f}_j = \sum_{i=1}^{n+1-j} D_{ij} / \sum_{i=1}^{n+1-j} D_{i,j-1}
$$

starting with the most recent cumulative claims amount $\hat{D}_{i,n+1-i} = D_{i,n+1-i}$ of accident year i. This yields

$$
\hat{D}_{in} = D_{i,n+1-i} \hat{f}_{n+2-i} \cdots \hat{f}_n
$$

as estimator for the ultimate claims amount for year i.

* Corresponding author.
E-mail addresses: tmack@munichre.com (T. Mack), gary.g.venter@guycarp.com (G. Venter).

0167-6687/00/$ – see front matter ©2000 Elsevier Science B.V. All rights reserved.
PII: S0167-6687(99)00039-6
The chain ladder algorithm was developed as a deterministic algorithm and did not have any stochastic model underlying it. Thus the question of what model underlies that algorithm cannot be answered by historical inquiry or even by strict logical deduction. But in order to assess its prediction error, an underlying stochastic model is required. In the last two decades, several models were associated with the chain ladder algorithm, but most of them lead to estimators for D_{in} which are different from the above \hat{D}_{in}, see e.g. Mack (1994) or England and Verrall (1998). The models compared in this paper are the only ones known that lead to the same estimator for D_{in} as the chain ladder algorithm. We argue that just one of them is close enough to the chain ladder algorithm in enough aspects that users of that algorithm should be able to accept all of its assumptions, and therefore should be comfortable with the prediction errors it implies. In this sense it qualifies to be called the stochastic model underlying the chain ladder algorithm.

Consider first the distribution-free stochastic model ("DFCL") of Mack (1993). Its main assumption is

$$E(D_{ij}|D_1, D_2, \ldots, D_{i,j-1}) = D_{i,j-1}f_{ij}$$

with unknown parameters f_2, \ldots, f_n.

From DFCL1 it can be deduced that

$$E(D_{in}|D_1, \ldots, D_{i,n+1-i}) = D_{i,n+1-i}f_{n+2-i} \cdots f_n$$

which immediately gives the chain ladder algorithm if the unknown parameters f_j are estimated by \hat{f}_j. It is important to realize that, in claims reserving, the relevant quantity to be estimated is the conditional mean of D_{in} given the data observed so far because these data are a part of the quantity D_{in} of interest. In Mack (1993) it is shown that \hat{f}_j is the minimum variance unbiased linear estimator of f_j if one makes the following additional assumptions:

$$\text{(DFCL2)} \quad \text{Var}(D_{ij}|D_1, \ldots, D_{i,j-1}) = D_{i,j-1}\sigma_j^2$$

with unknown parameters σ_j^2.

$$\text{(DFCL3)} \quad \text{The accident years } (D_1, \ldots, D_{in}), \ 1 \leq i \leq n, \text{ are independent.}$$

If DFCL2 is violated, some other variant of the chain ladder algorithm might still be optimal, as will be discussed further below. Failure of DFCL3 usually requires a different approach.

Hachemeister and Stanard (1975) had already proposed another stochastic model leading to the chain ladder algorithm. This model works on the incremental amounts

$$C_{i1} = D_{i1} \quad \text{and} \quad C_{ij} = D_{ij} - D_{i,j-1}, \ j > 1,$$

and makes the assumptions

(P1) $E(C_{ij}) = x_i y_j$ with unknown parameters x_i and y_j;

(P2) each C_{ij} has a Poisson distribution;

(P3) all C_{ij} are independent.

Then the maximum likelihood estimator $\hat{R}_i = \hat{x}_i \hat{y}_{n+2-i} + \cdots + \hat{x}_i \hat{y}_n$ of the claims reserve for year i,

$$R_i = C_{i,n+2-i} + \cdots + C_{in} = D_{in} - D_{i,n+1-i}$$

turns out to give the same prediction $\hat{D}_{in} = D_{i,n+1-i} + \hat{R}_i$ as the chain ladder algorithm. Due to the independence assumption P3, $D_{i,n+1-i} + \hat{R}_i$ is an estimator of the conditional expectation $E(D_{in}|D_1, \ldots, D_{i,n+1-i})$. Assumption (P2) implies that all incremental amounts C_{ij} have to be non-negative integers.

This Poisson model can be cast into the form of a Generalized Linear Model (GLM) with logarithmic link function via (cf. Renshaw and Verrall (1994))

(P1*) $\ln(E(C_{ij})) = \alpha_i + \beta_j$.

In this form, the parameters $\alpha_i = \ln(x_i)$, $\beta_j = \ln(y_j)$ can be estimated using standard statistical GLM software. Of course, this yields the same estimators for x_i, y_j, R_i and D_{in} because the estimation procedure of GLMs is maximum
likelihood, too. A further benefit of the use of GLMs is the fact that these show a way to overcome the constraint that \(C_{ij} \) have to be non-negative integers. For this purpose, we recall that the only distributional assumptions used in GLMs are the functional relationship between variance and mean and the fact that the distribution belongs to the exponential family. This relationship is \(\text{Var}(C_{ij}) = E(C_{ij}) \) in the Poisson case. It can be generalized to \(\text{Var}(C_{ij}) = \phi E(C_{ij}) \) without any change in form and solution of the likelihood equations. This allows for more dispersion in the data. For the solution of the likelihood equations it is not necessary that the \(C_{ij} \)'s are non-negative or integers. Therefore one does not care any more about the range of the underlying distribution; one speaks of an over-dispersed Poisson model and of quasi-likelihood equations. At least, the fitted values are always positive. However, the algorithm for the solution of the quasi-likelihood equations breaks down unless the sums of the observed incremental amounts in every row and every column are non-negative as can easily be seen from the quasi-likelihood equations

\[
\sum_{j=1}^{n+1-i} \exp(\alpha_i + \beta_j) = \sum_{j=1}^{n+1-i} C_{ij}, \quad 1 \leq i \leq n,
\]

\[
\sum_{i=1}^{n+1-j} \exp(\alpha_i + \beta_j) = \sum_{j=1}^{n+1-j} C_{ij}, \quad 1 \leq j \leq n.
\]

But this problem can be overcome if we work without the log-link and without GLM software. Then the over-dispersed Poisson model (“ODP”) is

(ODP1) \(E(C_{ij}) = x_i y_j \) with unknown parameters \(x_i, y_j \).

(ODP2) The distribution of \(C_{ij} \) belongs to the exponential family with \(\text{Var}(C_{ij}) = \phi E(C_{ij}) \) where \(\phi \) is an unknown parameter.

(ODP3) All \(C_{ij} \) are independent.

The resulting quasi-likelihood equations are

\[
\sum_{j=1}^{n+1-i} x_i y_j = \sum_{j=1}^{n+1-i} C_{ij}, \quad 1 \leq i \leq n,
\]

\[
\sum_{i=1}^{n+1-j} x_i y_j = \sum_{i=1}^{n+1-j} C_{ij}, \quad 1 \leq j \leq n.
\]

As has been shown in Appendix A of Mack (1991) (see also Schmidt and Wünsche (1998)), these equations have the unique solution (if all \(f_j \) are well-defined and \(\neq 0 \), but without any restrictions on the row sums or column sums over \(C_{ij} \))

\[
\hat{x}_i \hat{y}_j = D_{i,n+1-i} \hat{f}_{n+2-i} \ldots \hat{f}_{j-1} (\hat{f}_j - 1) \quad \text{for } j > n + 1 - i,
\]

\[
\hat{x}_i \hat{y}_j = D_{i,n+1-i} ((\hat{f}_j \ldots \hat{f}_{n+1-i})^{-1} - (\hat{f}_j \ldots \hat{f}_{n+1-i})^{-1}) \quad \text{for } j \leq n + 1 - i,
\]

with \(\hat{f}_j \) from the chain ladder algorithm. Because \((\hat{f}_j - 1) + \hat{f}_j (\hat{f}_{j+1} - 1) = \hat{f}_j \hat{f}_{j+1} - 1 \) we immediately obtain

\[
\hat{R}_i = \hat{x}_i \hat{y}_{n+2-i} + \cdots + \hat{x}_i \hat{y}_n = D_{i,n+1-i} (\hat{f}_{n+2-i} \ldots \hat{f}_n - 1).
\]

This shows that the solution of the quasi-likelihood equations of the ODP model gives the same estimator for \(D_{in} \) as the chain ladder algorithm and as the DFCL model. We will find some restrictions later.
2. Evidence that the models are different

In view of the fact that both models, DFCL1–3 and ODP1–3, yield the same estimators \(\hat{R}_t \) and \(\hat{D}_{i;n} \), as the deterministic chain ladder algorithm, the questions arise whether one model is a special case of the other and whether both models can be called “underlying the chain ladder algorithm”. First, we give five arguments, each of which shows that the models are different.

2.1. ODP has more parameters than DFCL

In ODP1, one of the parameters is redundant because replacing \(x_i \) with \(x_i/c \) and \(y_j \) with \(y_j/c \) yields the same model. Therefore ODP has \(2n - 1 \) parameters whereas DFCL has only \(n - 1 \) parameters \(f_2, \ldots, f_n \). If we make the parametrisation of ODP1 unique by requiring that \(y_1 = 1 \), then we have a one-to-one relationship between the set of the \(\hat{y}_j \) and the set of the \(\hat{f}_j \):

\[
\hat{f}_j = (\hat{y}_1 + \cdots + \hat{y}_j)/(\hat{y}_1 + \cdots + \hat{y}_{j-1})
\]

\[
\hat{y}_j = \hat{f}_2 \cdots \hat{f}_{j-1}(\hat{f}_j - 1), \quad j > 1.
\]

The parameters \(x_i \) of ODP have an equivalent neither in the chain ladder algorithm nor in the DFCL model. Within ODP, they make it possible to estimate the unconditioned means \(E(D_{i;1}) \), too, whereas within the DFCL model only the conditional means \(E(D_{i;j}|D_{1,i}, \ldots, D_{i,j} - 1) \) can be estimated.

Sometimes it is claimed, each \(D_{i,n+1-i} \) would be a further parameter in the chain ladder algorithm, being an estimator for \(E(D_{i,n+1-i}) \). But this argument is not convincing because there would exist better estimators, e.g. any average of all \(D_{i,j}; f_{j+1} \cdots f_{n+1-i}, 1 \leq j \leq n + 1 - i \). Moreover, the DFCL model clearly shows that there \(D_{i,n+1-i} \) is not an estimator of \(E(D_{i,n+1-i}) \) but is the result of conditioning on the known data.

2.2. ODP and DFCL have diverging independence assumptions

Either model assumes that the accident years (rows) are independent. In addition, ODP3 requires all increments \(C_{ij} \) within each accident year to be independent, too, whereas DFCL implies that all \(C_{ij} \) within the same accident year are correlated: e.g. given \(D_{i,j-1} \), we have (with \(E(\varepsilon_{j+1}) = 0 \))

\[
C_{i,j+1} = D_{i,j+1} - D_{ij} = D_{ij}(f_{j+1} - 1) + \varepsilon_{j+1} = (D_{i,j-1} + C_{ij})(f_{j+1} - 1) + \varepsilon_{j+1}
\]

which shows that \(C_{i,j+1} \) and \(C_{ij} \) are correlated.

2.3. The fitted values \(\hat{C}_{ij} \) or \(\hat{D}_{ij} \) and therefore also the residuals \(r_{ij} = \hat{C}_{ij} - C_{ij} \) for ODP are different from those of DFCL:

The fitted value \(\hat{D}_{ij} \) for \(j \leq n + 1 - i \) for the DFCL model clearly is

\[
\hat{D}_{ij} = D_{i,j-1}\hat{f}_j \quad \text{or} \quad \hat{C}_{ij} = D_{i,j-1}(\hat{f}_j - 1).
\]

Note that there are no fitted values for the first column \(D_{1,1} = C_{1,1}, 1 \leq i \leq n \).

The fitted value \(\hat{D}_{ij} \) for \(j \leq n + 1 - i \) for the ODP model is (see above)

\[
\hat{C}_{ij} = \hat{s}_i\hat{y}_j = D_{i,n+1-i}((\hat{f}_{j+1} \cdots \hat{f}_{n+1-i})^{-1} - (\hat{f}_j \cdots \hat{f}_{n+1-i})^{-1}),
\]

which yields

\[
\hat{D}_{ij} = D_{i,n+1-i}/((\hat{f}_{j+1} \cdots \hat{f}_{n+1-i})^{-1})
\]
which is different from DFCL, because e.g. for \(j = n + 1 - i \) we obtain \(D_{i,n-i}/f_{n+1-i} \) as fitted value for DFCL and \(D_{i,n+1-i} \) as fitted value for ODP which are different for \(i > 1 \) because \(f_{n+1-i} \) depends not only on \(D_{i,n+1-i}/D_{i,n-i} \) of accident year \(i \) but also on the corresponding ratios of all older accident years, too. Another way to see the difference is to look at \(D_{i,j}/D_{i,j-1} \) for \(j \) fixed which is constant for ODP (\(= f_j \)) but not for DFCL.

2.4. The true expected reserves \(E(R_i|\text{data}) \) described by the models are different

If we would know the true parameters \(f_2, \ldots f_n \) and \(x_i, y_j \), respectively, and if it were possible to draw several sets of observations (run-off triangles \(\{D_{ij}, i+j \leq n+1\} \)) from the same “population”, then the reserve estimator (expected reserve) \(\hat{R}_i = E(R_i|\text{data}) = D_{i,n+1-i}(f_{n+2-i} \ldots f_n - 1) \) of the chain ladder algorithm as well as of the DFCL model would change from one random draw to the next as \(D_{i,n+1-i} \) changes, but the reserve estimator \(\hat{R}_i = E(R_i|\text{data}) = x_i y_{n+2-i} + \ldots + x_i y_n \) of the ODP model would not.

2.5. The simulated future emergence is different

To simulate the future values of \(C_{ij} \) for ODP, all their expected values could be calculated, and then random draws added. For DFCL, on the other hand, the first new diagonal could be simulated this way, but for the second new diagonal the simulated cumulative value for the first diagonal would have to be multiplied by the development factor to get the mean value for the second diagonal. This mean thus includes the random component simulated for the first diagonal, which is not the case for the ODP simulation.

2.6. Conclusion

Whereas after (2.1) ODP could still seem to be a special case of DFCL, (2.2), (2.3), (2.4) and (2.5) show that the models are definitively different. In each of these areas of difference, the DFCL agrees with the chain ladder algorithm to the extent that the algorithm has a clear implication. For instance, the chain ladder algorithm does not compute any parameters other than the development factors, and if you wanted to measure goodness-of-fit for the chain ladder algorithm, you would calculate the fitted values as the development factors times the previous cumulative losses. The ODP differs from the chain ladder algorithm in these aspects.

Moreover, the fact that the true expected reserves are different, clearly shows that the reserve estimators of both models coincide only incidentally and not due to any inner connection. As a consequence, especially from (2.4) and (2.5), the prediction errors of the models are different, too. For the formulae of the prediction errors see Mack (1993) for the DFCL model and England and Verrall (1998) for the ODP model. Therefore, the prediction errors calculated with the bootstrap approach of England and Verrall (1998) cannot be viewed to be the prediction errors for the chain ladder algorithm. A bootstrap approach to the chain ladder prediction errors would contain a resampling the individual development factors \(F_{ij} = D_{ij}/D_{i,j-1} \) within each column \(j \), but would be questionable for the last few columns, due to limited data.

3. Other differences between the ODP model and the chain ladder algorithm

The chain ladder algorithm leads to closely related alternatives when the data is not exactly as required, and these alternatives can be readily accommodated by the DFCL model with appropriate adjustments to the assumptions. This is not the case with the ODP in the following two examples.
3.1. ODP does not work in all situations where the chain ladder algorithm works

In practice, it often happens that the figures of the oldest calendar years are not available. This means that the run-off triangle \(\{D_{ij}|i+j \leq n+1\} \) changes its shape to a trapezoid \(\{D_{ij}|m \leq i+j \leq n+1\} \) with \(2 < m \leq n \). Then the ODP model does not yield estimators \(\hat{R}_i \) identical to the DFCL model and chain ladder algorithm. This is most easily seen for the following trapezoid (missing \(D_{11} \)):

\[
\begin{array}{ccc}
D_{12} & D_{13} & \\
D_{21} & D_{22} & C_{21} \\
D_{31} & & C_{31}
\end{array}
\]

with incremental amounts \(C_{13} \), where \(C_{12} \) cannot be known because otherwise one would also know \(D_{11} = D_{12} - C_{12} \). In this situation the ODP model clearly cannot be applied (4 observations for 5 parameters) but both, chain ladder algorithm and DFCL model, can (with \(f_2 = D_{22}/D_{21} \), \(f_3 = D_{13}/D_{12} \)) and yield identical results. Here, the disadvantage of the additional parameters \(x_i \) of the ODP is clearly exhibited.

More generally, if one or several claims amounts \(D_{ij} \) or \(C_{ij} \) somewhere in the run-off triangle are not known or omitted as being not credible (e.g. a typing error or a large individual claim whose amount is not known), then the ODP yields different estimations for \(D_{in} \) from chain ladder algorithm (and from DFCL). The reason is the fact that the proof for the formula

\[
\hat{x}_i \hat{y}_j = D_{i,n+1-i} \hat{f}_{n+2-i} \ldots \hat{f}_{j-1}(\hat{f}_j - 1) \quad \text{for} \quad j > n+1-i,
\]

only works if \(D_{i,n+1-i} \) equals the sum of all \(C_{ij} \) known for accident year \(i \) which is not the case if some \(C_{ij} \) are missing.

3.2. ODP cannot be adapted if the weights in \(\hat{f}_j \) are changed

In practise, the estimator for \(f_j \) is often calculated in a different way from \(\hat{f}_j \), e.g.

\[
\hat{f}_j = \frac{1}{n+1-j} \sum_{i=1}^{n+1-j} \frac{D_{ij}}{D_{i,j-1}}
\]

(straight average) or

\[
\hat{f}_j = \sum_{i=1}^{n+1-j} D_{i,j-1} D_{ij} / \sum_{i=1}^{n+1-j} D_{i,j-1}^2
\]

These estimators lead to different estimators for \(R_i \) and \(D_{in} \) from those based on \(\hat{f}_j \). It can be shown that the DFCL model can easily be adapted to these estimators via

\[
(\text{DFCL}2') \quad \text{Var}(D_{ij}|D_{i1}, \ldots, D_{i,j-1}) = D_{i,j-1}^2 \sigma_j^2
\]

or

\[
(\text{DFCL}2") \quad \text{Var}(D_{ij}|D_{i1}, \ldots, D_{i,j-1}) = \sigma_j^2
\]

But if one tries to adapt ODP3 to

\[
(\text{ODP}3') \quad \text{Var}(C_{ij}) = \phi(E(C_{ij}))^2
\]
(Gamma–GLM, cf. Mack, 1991) or

\(\text{(ODP3)} \quad \text{Var}(C_{ij}) = \phi \)

(least squares method of DeVylder (1978)), one obtains estimators for \(R_l \) and \(D_{in} \) which are again different from those of the CL algorithm with \(\hat{f}_j \) or \(\tilde{f}_j \), respectively. There are no other variance assumptions known under which ODP could be adapted to give the same predictions as the chain ladder algorithm with \(\hat{f}_j \) or \(\tilde{f}_j \).

4. Conclusion

The DFCL and ODP models are different and they yield the same predictions only in a special but common situation. But even then, the prediction errors and the model descriptions of the true amounts to be predicted are different. Because the DFCL model agrees with the chain ladder algorithm in every identified area, whereas the ODP does not, users of that algorithm should be able to accept all of the assumptions of the DFCL. In fact, Venter (1998) shows that when those assumptions are violated, other algorithms should be considered. Thus when a stochastic model is needed to estimate chain ladder prediction errors, only the DFCL model can be considered to be underlying the chain ladder algorithm.

References

Hachemeister, Stanard, 1975. IBNR claims count estimation with static lag functions, Spring Meeting of the Casualty Actuarial Society.

