Backward unraveling over time: The evolution of strategic behavior in the entry level British medical labor markets

M. Utku Ünver*

4P22 Posvar Hall, Department of Economics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Accepted 12 June 2000

Abstract

This paper studies an evolutionary programming technique, namely a genetic algorithm, to analyze how a population of decision-makers learn to coordinate the selection of an equilibrium or a social convention in a two-sided matching game with incomplete information. In the contexts of centralized and decentralized entry-level labor markets, evolution and adjustment paths of unraveling are explored using this technique in an environment inspired by the Kagel and Roth (2000. Quarterly Journal of Economics 115(1), 201–235) experimental study. As an interesting result, it is demonstrated that stability need not be required for the success of a matching mechanism under incomplete information in the long run. © 2001 Elsevier Science B.V. All rights reserved.

JEL classification: C63 computational techniques; C78 bargaining theory; matching theory; D83 search; learning and information

*This paper has won one of the two graduate student prizes awarded by the Society for Computational Economics in 1999. I would like to express my gratitude especially to John Duffy, Alvin Roth, and also to Masaki Aoyagi, John Kagel, Philip Reny and James Warnick for valuable suggestions in preparation and progress of this study. I would like to also thank an anonymous referee. This study is presented at 'Computing in Economics and Finance '99' in Boston, MA and at the 'Workshop on Interactions and Learning' in the 'Summer Festival on Game Theory '98' in Stony Brook, NY. This paper is prepared from a chapter of Utku Ünver's dissertation.

* Tel.: 1-412-648-5312; fax: 1-412-648-1793.

E-mail address: unver@pitt.edu (M.U. Ünver).

1 Present address: Koc University, College of Administrative Sciences and Economics, Office No. 256, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.
Keywords: Genetic algorithms; Linear programming matching; Stability; Two-sided matching; Unraveling

1. Introduction

In the markets where young professionals seek their first entry-level positions, the contract dates sometimes shift far earlier than the start of employment. This phenomenon, known as unraveling, causes ex-post inefficiencies in market matching even though it may lead to an equilibrium. In some unraveling markets, contracts are made before most of the needed information becomes available.

There are many real life examples of unraveling markets, where better qualified agents choose to contract early, and less qualified agents wait to make contracts until the start of employment. Elite colleges have both early and regular admission programs. Another example can be seen in pro-sports draft selections in the USA. Post-season college football bowl selections and entry-level labor markets for judges and for medical interns are examples of natural experiments involving unraveling.

This study will focus on entry-level medical intern-hospital labor markets in Britain. It will explore the nature of strategic behavior in these markets. Centralized institutions were established to control the dates of contracts in these markets.

The entry-level medical intern labor markets in Britain are regional. We assume that almost every region is similar to the others in terms of the preferences of agents and information structure. Therefore, the only difference between these markets appears in the manner through which agents are appointed. British markets employ different mechanisms to match interns and hospital consultants to each other. These markets are not competitive. Wage negotiations do not exist. The markets are organized mostly in an oligopolistic structure that gives all the power to the hospital consultants in the design of these matching mechanisms. The jobs last only six months, so initial appointments are binding.

Kagel and Roth (2000) consider a study similar to the environment here. In that study, they conduct a laboratory experiment on the mechanisms used in Britain. Ünver (2000) works on an extended experiment. This study will be a complement to the Kagel and Roth (2000) study and to Ünver (2000), and will answer the questions regarding the stability of matching mechanisms using computational methods.

2 Roth and Xing (1994), Li and Rosen (1998) present several other examples.
The basic properties of these labor markets are given in Section 2. After proposing matching games to explore unraveling in these markets in Section 3, we will study game-theoretic properties of these matching games in Section 4. Then in Section 5, we will propose the use of an evolutionary programming technique, namely a genetic algorithm (GA), to analyze the strategic behavior that employees and employers follow to adjust to an equilibrium from different initial conditions. This computational tool will be used to analyze the genetic evolutionary strategic behavior of agents who can be viewed as learning over time which strategies are best to adopt. In Section 6, evolution experiments are simulated to examine different properties of institutions used to control the dates of contracts. Robust features of evolution will be examined.

This essay allows us to explore an evolutionary programming tool that can be used in combination with laboratory experimentation and even with field applications. This tool can be used in equilibrium selection of a wide variety of equilibria of the matching game.

One interesting result will be the demonstration of how some theoretically unstable mechanisms, namely linear programming (LP) mechanisms, may not unravel under the assumption that agents learn in an evolutionary manner and initially randomize their rank-order lists. This may help explain the field success of LP mechanisms used in Britain.

1.1. A brief literature survey on two-sided matching

An experimental study by Kagel and Roth (2000) works on a similar environment to the one handled in this study to analyze timing of transactions. They consider two mechanisms. The main result of the experiment is that lower levels of early contracts are observed in a stable deferred acceptance (DA) matching market than in an unstable priority matching market. More qualified agents make early contracts; less qualified do not arrange early under the unstable priority mechanism. Both type of agents do not unravel under the stable mechanism.

The Ünver (2000) study, an extension to the Kagel and Roth study, shows that a LP mechanism will not do as well as a stable DA mechanism in terms of preventing harmful early contracts in the laboratory. Agents do not game their preferences in an optimal way and the finitely repeated play of the games in the experiment is not as long as the computational markets considered in this study. But, it decreases the unraveling occurred in the decentralized markets. So does the unstable priority matching mechanism.

The timing of transactions in an entry-level labor market framework has been studied by Roth and Xing (1997) to investigate the turnaround time and bottlenecks in market clearing for clinical psychologists.

Cooperative game theoretical properties of the two-sided matching mechanisms employed in Britain are studied by Roth (1991b), Roth and Xing (1994), Li

Entry-level labor markets have been studied in the two-sided matching framework (see Roth and Sotomayor (1990) for a theoretical background and motivation) through the marriage and assignment models. The marriage model will be used here, since wage negotiations (i.e., side-payments) will not be a concern. The links between the theoretical framework of Gale and Shapley’s (1962) marriage model and the applied frameworks observed in the field (such as the entry-level labor markets for American physicians, osteopaths, dentists, lawyers, sororities, judges, etc.) are established by Roth (1984), Roth and Sotomayor (1990), Mongell and Roth (1991) and in the above-mentioned studies. Roth (1990) gives a survey about these markets.

Engineering aspects of economic design in two-sided matching markets are also studied in the economics literature. The Roth and Peranson (1999) study gives design aspects of the new National Residency Matching Program algorithm.

1.2. Coevolution in games with multiple populations

However, all of these listed studies except Kagel and Roth’s (2000) and Ünver’s (2000) investigate the problem in a mainly static and cooperative framework. These do not exactly describe the reasons why some unstable mechanisms (such as the London and Cambridge hospitals’ selection process for medical interns) are still in use.

Some other recent studies involving market transition behavior relax the ‘best response play’ hypothesis of game theory. In place of best response, these studies have adopted an evolutionary dynamic to update the strategy choices. This dynamic is partly adapted from biological research. Each agent selects strategies in a game-theoretic setting in proportion to their relative ratio in the population. Evolution continues over time in each repeated play of a game.

Admission markets are perfect settings for application of this hypothesis. Workers change every year, but they have strong incentives to adopt the experience of the previous generation. Firms are usually the permanent players. They learn from the previous year’s experience. Equilibrium selection and the nature of the adjustment process can be examined thoroughly with different evolution dynamics. We will use a GA for analysis in a computational framework.

3 Roth (1991a) inspires the economic design issue in economics.
Entry-level labor market games possess multiple equilibria which reflect different modes of coordination of two different sides of agents (workers and firms). In matching games, enumeration of the huge strategy space is quite difficult. Any analytical evolutionary concept with a fixed set of strategies seems limiting the complex nature of the games. As proposed by Fudenberg and Levine (1998), GAs seem the best hope in exploration of the strategy spaces. Therefore, we will focus on GAs.

1.2.1. Description of genetic algorithms

Basically, a GA is a computational tool that permits adaptive optimization or evolution over time, using genetics-based operators and assumptions of biological evolution. In a game-theoretic setting, a GA is a technique that helps in the analysis of evolution dynamics and determines paths to a social equilibrium concept or a social convention. GAs search strategy spaces on the trade-off between exploration and exploitation of results achieved by difference equation and calculus-based procedures.

By mutating, crossing over, and reproducing strategies, a ‘population’ of existing strategies in a game can be replaced to form new strategies as the offspring. An existing set of strategies of agents is called a generation. The fitness of the strategy measures the success of a strategy in a generation after a tournament against all strategies in that generation. Using this measure, parent strategies are selected to produce offspring, which makes up the next generation.

GAs are used in the economics literature generally to find evolution dynamics in macroeconomic models, where social learning is a major concern. Overlapping generation models and general equilibrium frameworks are two of the applications of evolution programming in economics. In game theory, GAs can be applied to complicated games where the strategy sets are too large for learning models such as the Roth and Erev (1995) model, the Camerer and Ho (1999) model or stochastic fictitious play. They can support laboratory experimentation via similarities between evolution strategies and actual human strategies. As an example, Miller (1996) investigates the evolved automata of a repeated prisoners’ dilemma using a GA. As another example, Andreoni and Miller (1995) use a genetic algorithm in auction market simulations to find evidence to support the behavior observed in laboratory experiments. Technical and some theoretical issues regarding the application of a GA are addressed by Goldberg (1989), Holland (1992), Judd (1998) and Michalewicz (1994).

The reproduction and crossover process of the GA can be interpreted as the transmission of experience between generations of agents. Since the Kagel and Roth (2000) experiment treats also workers as permanent players across generations and since we base our matching game design on this experiment, we use the same genetics-based learning for both firms and workers. Agents of the same type will use the same reproductive selection. We will also consider only symmetric strategies.
2. The two-sided matching markets in Britain

The reader can follow Roth (1991b) for a detailed discussion of the matching markets in Britain. In summary, the matches for consultant and medical intern pairs were realized in a decentralized manner at the beginning of the century in Britain. However, unraveling appeared in these markets. Almost simultaneously, many regions adopted different centralized matching mechanisms to prevent unraveling. A mechanism is a function from the set of preferences to the set of matchings. In practice, computers process rank-order lists submitted by agents to produce a matching according to the mechanism.

In several of the areas, including Newcastle, Birmingham and Edinburgh (1967), the unraveling problem could not be resolved although centralized but unstable ‘priority’ matching mechanisms were introduced. They were abandoned after field trial. A mechanism is unstable if a preference profile exists for which the produced matching is unstable. A matching is unstable if a firm and a worker exist who prefer each other rather than their matches or an agent exists who prefers staying unmatched rather than being matched to the partner assigned.

Several regions were successful in preventing the problem by introducing centralized mechanisms. Roth (1991b) argues that stability determined the winners. Indeed, the successful Edinburgh’69 and Cardiff mechanisms were adaptations of stable mechanisms.

But there are two unstable mechanisms still in use in the London and Cambridge regional markets of Britain. These, called LP mechanisms, have not been subject to the unraveling problem. Therefore, they deserve attention, because stability may not be a necessary condition for survival of a centralized mechanism in the field.

2.1. Description of centralized matching mechanisms

2.1.1. Priority matching mechanisms

The mechanisms introduced in Newcastle, Birmingham, and Edinburgh (1967) give a priority rank to each match, according to the preferences of agents, and matches are realized from the highest to the lowest priority. Details of the algorithms are given by Roth (1991b).

The Birmingham and Newcastle mechanisms give priority to a consultant-intern pair as the product of the intern’s ranking of the consultant and the consultant’s ranking of the intern. Priorities are lexicographic in consultants’ preferences for the Edinburgh (1967) mechanism.

These mechanisms are unstable and have unraveled, so they were abandoned (see Example A.1 in Appendix A). If a student and a medical consultant each rank the other first, a so called (1,1) match, they are guaranteed to be matched to each other.
2.1.2. Linear programming matching mechanisms

The mechanisms introduced in London and Cambridge solve an assignment problem to find a matching. Shah and Farrow (1976) and Roth (1991b) give details of the algorithms. After weights are assigned to each possible pair with respect to the submitted rank-order lists, they are summed up for potential pairs in each matching. The resulting weights are used in an integer programming problem to find a matching that maximizes these weights. For our purposes, the problem reduces to the linear programming problem

\[
\max_{x_{fw}} \sum_{fw} \alpha_{fw}x_{fw}
\]

s.t.

(i) \[\sum_{f} x_{fw} \leq 1,\]

(ii) \[\sum_{w} x_{fw} \leq 1,\]

(iii) \[0 \leq x_{fw} \leq 1 \ \forall f \text{ and } w,\]

where \(\alpha_{fw}\) is a weight. \(x_{fw} = 1\) denotes a match between \(f\) and \(w\), \(x_{fw} = 0\) denotes no match in the solution.

Different regions use different methods to determine these weights. In the London region, weights are determined by summing up the firm’s weight for the worker and the worker’s weight for the firm in a pair. These individual weights are decreasing in rank of agent in the rank-order list. In the Cambridge region, the weight for a pair is ‘lexicographic’ in consultant’s preferences. For example, a match involving a consultant’s second choice brings less weight than any match with a consultant’s first choice. Although they are unstable, these algorithms have survived and are still in use. One hypothesis to account for their survival is that it is easy for the agents to adjust to the system by manipulating their rank-order lists (see Shah and Farrow, 1976). (1,1) matches may not be realized (see Examples A.1 and A.2 in Appendix A).

2.1.3. Deferred acceptance matching mechanisms

The mechanisms introduced in the Edinburgh (1969) and Cardiff regions are adaptations of Gale and Shapley’s (1962) stable mechanisms.
In modeling Edinburgh (1969 and later) and Cardiff markets, it will be assumed that these markets use one-to-one DA mechanisms. The Edinburgh (1969) mechanism will be approximated by the consultant proposing DA scheme, and the Cardiff mechanism will be approximated by the intern proposing DA algorithm. The consultant proposing DA algorithm can be stated as follows for future reference. Suppose Q is the rank-order list profile submitted, that is the vector of rank-order lists submitted by each consultant and student.

At the first step, each consultant, f, proposes to his most favored intern with respect to $Q(f)$. Each intern, w, holds only the best consultant's proposal with respect to $Q(w)$ if that is acceptable to her; she refuses all others.

At any other step, each consultant, f, who does not have an offer held by an intern proposes to the remaining most favored intern with respect to $Q(f)$. Each intern, w, holds only the best offer with respect to $Q(w)$ among all the new proposals at this step and the offer held from the previous step.

When no offers are rejected at a step, the algorithm terminates and tentative agreements are realized as matches.

These are stable mechanisms, in the sense that the matching produced is stable with respect to the submitted rank-order list profile. They have not unraveled and are still in use.

3. An incomplete information model for unraveling

We begin with an entry-level labor market model of n firms (set F) and m workers (set W). In order to motivate the British experience, this study considers a market that clears at three consecutive rounds. We will refer to consultants as firms and to interns as workers in our model. (Some preliminaries about the cooperative two-sided matching theory are given in Appendix A.) The games considered are partially adopted from the Kagel and Roth (2000) laboratory experiment, because this is the only work that studies human dynamics in unraveling markets. So, we can compare our results with those of that study. We also adopt primary computational values from these experimental games. First, we consider a decentralized matching game.

3.1. The ‘decentralized’ matching game

This game has three periods: In round -2, a firm has the option to make an offer to one worker and a worker has the option to accept one offer. An accepted offer binds parties for an early match. Round -1 is a replay of round -2 among the players who have not made an arrangement in round -2. Similarly, round 0 consists of replay of round -1 among the players who have not made early arrangements yet. The rounds differ from each other in terms of the costs of arrangement. A match in round -2 has the cost $\$2$, round -1 matches cost $\$1$ and round
3.2. The ‘centralized’ matching games with decentralized early offers

These games have also three periods: in each of the rounds -2 and -1 a firm has the option to make an offer to one worker and a worker has the option to accept one offer. An arrangement is costly. Round 0 is replaced by a centralized market. Agents submit rank-order lists, these are processed by a centralized mechanism. We study two different early arrangements. Through the first arrangement technology (technology 1), we assume that early arrangements are tentative. Agents only commit to list each other in first place in round 0 rank-order lists. They freely fill the rest of rank-order lists. Second arrangement technology (technology 2) studies the case in which these arrangements are binding. Only agents who do not make early arrangements participate in the mechanism matching and they do not pay any costs. The costs of early arrangements are set to 2 in round -2, 1 in round -1. A cost is charged regardless of whether the arrangement was successful or not. The first two rounds are exactly the same in the binding arrangement centralized games and in the decentralized game. In all the games, agents are not informed about the early matches and about the early offers and acceptances/rejections.

These arrangement technologies are motivated by the British experience where agents have to participate in the mechanism match. Since priority and DA mechanisms turn (1,1) lists into a match these two technologies coincide strategically.

In summary, we consider 10 different Bayesian games: a decentralized game, centralized games under 3 priority matching mechanisms, 2 DA markets, and tentative and binding arrangement treatments of 2 LP markets.

3.3. The partially correlated preferences

The preferences of agents are determined by partially correlated rank-order lists. There are two disjoint set of players, workers and firms. Each firm and worker is of one of the two types, ‘high productivity’ or ‘low productivity’. $n/2$ firms are high, $n/2$ firms are low productive. Similarly, $m/2$ workers are high and $m/2$ workers are low productive. The types of agents are common knowledge. We will only consider $n = 6$ and $m = 6$ in our learning simulations.

The utility of a firm f from a worker w can be given by

$$u_f(w) = t_w + \theta_{f,w}$$

(2)

5Centralized matching games with early decentralized offers’ will be referred as ‘centralized matching games’ from now on.
with \(\theta_{f,w} \sim g \), a density function. Similarly for a worker \(w \), the payoff from a firm \(f \) can be given by

\[
u_w(f) = t_f + \theta_{w,f}\]

(3)

with \(\theta_{w,f} \sim g \) where the primary computational values are

\[
t_v = \begin{cases}
5 & \text{if } v \text{ is a low-type agent} \\
15 & \text{if } v \text{ is a high-type agent}
\end{cases}
\]

(4)

and \(g = U(-1,1) \), the uniform density with the support \([-1,1]\). The payoff of being unmatched is zero for an agent \(v \) (i.e., \(u_v(v) = 0 \)). While \(t_f \) and \(t_w \) are common knowledge, \(\theta_{w,f} \) is private to \(w \) and \(\theta_{f,w} \) is private to \(f \). The payoff of an agent in the market is the utility she gets from being matched minus the early arrangement cost.

4. Strategic behavior in the stage games

Suppose \(F_H = \{f_1, \ldots, f_{n/2}\} \) is the set of high firms and let \(F_L = \{f_{n/2+1}, \ldots, f_n\} \) be the set of low firms. Similarly define \(W_H \) and \(W_L \). Let the set of high agents be \(H = F_H \cup W_H \) and the set of low agents be \(L = F_L \cup W_L \). Let \(P \) be the true preference profile of agents, the realization of the partially correlated preference profile \(\tilde{P} \). Let \(\mathcal{P} \) be the set of those profiles where the preferences are rational and admissible by the partially correlated preference distribution. \(P(v) \) is only known by agent \(v \), while the distribution of \(\tilde{P} \) is common knowledge. A preference profile is rational if it is transitive and complete. Admissible preferences always rank high agents strictly preferred to low agents who are preferred to being unmatched. Define \(U, U(v) \) and \(\tilde{U} \) for the utility values and the set \(\mathcal{U} \) similarly. Define the pure strategy of agents in the Bayesian games for each realization of utilities by a function \(s: \mathcal{U} \rightarrow \mathcal{S} \), onto the set of complete information strategies from the set of utility profiles. Let productivity types be defined as \(\mathcal{T} = \{F_H, W_H, W_L, F_L\} \). Let \(\mathcal{S} \) be the set of pure strategies. Let strategies be defined in terms of rank-orders instead of identities of agents. For example, a strategy might specify that a firm makes its first offer to its highest ranked worker, at period 1. A strategy \(s \in \mathcal{S} \) is symmetric if it is employed by every agent in a type that is \(s_v(U(v), \tilde{U}_v) = s_v(U(v'), \tilde{U}_v) \) \(\forall v, v' \in T \forall T \in \mathcal{T} \). We will say a worker \(w \in W \) and a firm \(f \in F \) unravel if they arrange in rounds \(-2\) or \(-1\) in any of the games.

In examining stability under incomplete information, we will use ex-post stability and instability (i.e., stability and instability of the outcome matching for all possible realizations of the preference profiles).

The next section considers some of the equilibrium properties of the 10 games considered in this study.
4.1. The equilibria

Here we will concentrate on symmetry, thus the outcomes will be simple lotteries over matchings for symmetric strategies.

Lemma 1. Under the binding arrangement centralized Bayesian games with the priority and DA mechanisms, symmetric Bayesian–Nash equilibria exist, whose outcomes match all agents, involve no mismatches between high and low types of agents, and involve no early arrangements. Such symmetric equilibria do not exist for decentralized games. (See Appendix B for a sketch of the proof.)

There may or may not exist such equilibria for the LP mechanisms depending on the weighing schemes. For the weights considered here, such equilibria do not exist:

Lemma 2. There does not exist any pure strategy symmetric Bayesian–Nash equilibrium whose outcome matches all agents, involves no mismatches between high and low agents, and involves no early arrangements for the centralized Bayesian game with the LP mechanisms under the binding arrangements. (See Appendix B for a proof.)

4.2. Incentive-compatibility of mechanisms under incomplete information

In the incomplete information environment proposed here, there exist mechanisms (namely the DA mechanisms) that have at least one Bayesian-Nash equilibrium of the mechanism rank-order list submission game with an ex-post stable matching with respect to the true preferences with probability one. Moreover, one of the equilibria with this outcome is truthful revelation of preferences. DA mechanisms are incentive-compatible mechanisms for this information structure and utility values. However priority and LP mechanisms are not.

Lemma 3. Truthful revelation of rank-order lists (i.e., the strategy \(s \) with \(s(P) = P \ \forall P \)) is a symmetric BNE in the ‘direct revelation game’ of the DA mechanisms for the partially correlated preferences with the given parameter values for the computational model. (See Appendix B for a proof.)

\(^6\) Under complete information, no incentive-compatible matching mechanism exists. See Roth and Sotomayor (1990).
5. Genetic evolution

In order to model a behavior that determines the adjustment paths to an equilibrium or a social convention, a genetic algorithm (GA) is used. This study will be interested in the evolution of strategies and the dynamics of markets. The evolution and the adjustment process will be the primary concern, not the steady-state evolution stage. The evolution of market behavior will be examined after the adoption of new market organizations. For example, we examine the change in behavior after decentralized markets are replaced by centralized markets.

The basic GA, which is run independently SN number of times to determine the average behavior using Monte Carlo experimentation, is stated as pseudocode in Fig. 1.

Fig. 2 shows the representation of the strategies in the GA. We use a representation of a strategy in the games, through a string of integers. Under this representation, each string represents a valid strategy, although some parts of the string can be redundant.

The average simulated behavior is determined after $SN = 30$ runs of the basic algorithm. The number of agents in each side are set as $m = n = 6$. The values of parameters and genetic operators can be chosen freely, and do not affect the ordering of the results to be presented as will be described later. The speed and magnitude of adjustment dynamics can be calibrated by these parameters. For the simulations presented here, the following parameter values are chosen: $p = 0.90$, the crossover probability, $q = 0.05$, the mutation probability. The number of generations is determined as $DG = 40$ decentralized market game generations followed by 120 centralized game generations, a total of $G = 160$ generations. The population of strategies is determined to be $4s_t = 28$ ($s_t = 7$ for each type).\(^8\) The number of reproduced best strategies is set to be $h = 1$.\(^9\)

6. Evolution experiments for random initial conditions

First, we present some of the terminology used to define the properties of the experiments in the graphs in Appendix C. The average total cost of unraveling is

\(^7\) The genetic algorithm, all the matching mechanisms, and the games are coded in PASCAL and run on a Pentium 120 MHz microprocessor-based IBM-PC compatible machine. PASCAL implementations of ‘Numerical Recipes’ routines by Press et al. (1996) are used whenever needed.

\(^8\) Increasing the population size is very expensive in terms of CPU run-time. For example, introducing a new strategy to each type (i.e., increasing population size from 28 to 32) increases the CPU-time by 1.71 times (slightly less than doubling the CPU run-time).

\(^9\) The number of plays of a single strategy in the tournament of the genetic algorithm is therefore $7^3 = 343$. The fitness of the strategy is the sum of the average payoffs the strategy earns for the three agents of a type in these 343 plays.
For $i = 1$ to SN, simulation number
1 Randomly generate the initial population s_i of strategies for each type $T = \text{High firms, high workers, low firms, low workers}$.
2 For $j = 1$ to G, number of generations
 2.1 Generate a preference profile using the partially correlated preference distribution.
 2.2 Make a tournament between each strategy of each type, treating them as symmetric strategies.
 2.2.1 If $g \leq DG$, decentralized game generation, then use decentralized game in the tournament.
 2.2.2 Otherwise use one of the centralized games in the tournament
 2.2.3 Fitness of a strategy is sum of payoffs strategy achieves in each play
 2.3 For $k = 1$ to h, highest fitness strategy number, reproduce the highest fitness strategies for each type.
 2.4 For $k = 1$ to $s_i - h$, crossover the parents linearly for each type.
 2.4.1 Randomly choose four parent candidates C_1, C_2, C_3, C_4 for each type among the current generation.
 2.4.2 The higher fitness strategies of C_1, C_2 and C_3, C_4 become the two parents P_1, P_2 for each type.
 2.4.3 With probability p crossover the parents P_1, P_2, with probability $1 - p$ directly clone the parents as the offspring (Bernoulli density).
 2.4.3.1 Randomly draw a crossover ‘joint’ digit in the strategy string of the size ‘length.’
 2.4.3.2 Copy the digits 1,..., ‘joint’ of P_1 and ‘joint’ + 1,..., ‘length’ digits of P_2 to form the child O_1.
 2.4.3.3 Copy the digits 1,..., ‘joint’ of P_2 and ‘joint’ + 1,..., ‘length’ digits of P_2 to form the child O_2.
 2.5 Mutate each digit in the offspring strategies of each type with probability q (Bernoulli density).
 2.5.1 For mutation of offers/acceptances draw a digit from $\{1, 2\}$.
 2.5.2 For mutation of rank-orders draw a digit from $\{1, 2, 3, \ldots, m\}$ for a firm strategy ($\{1, 2, 3, \ldots, n\}$ for a worker strategy).

Fig. 1. The genetic algorithm.

the total cost incurred by all players by making early arrangements in rounds -2 and -1 in one generation of a simulation. Firm offer rates in a round are determined for both types. In that round, the ratio of firms making an offer for arrangement to currently unmatched firms of the type is considered. The low worker acceptance rate is the ratio of low workers accepting a best offer to the current number of unmatched low workers who receive at least one offer in that round. The high worker acceptance rate is differentiated from the low worker acceptance rate, since low firms almost always offer early arrangements
THE DECENTRALIZED GAME ‘FIRM’ STRATEGY STRING
\[o_{-2}r_{-2} - o_{-1}r_{-1} - o_0r_0 \]
\[o_t \in \{1, 2\}: 1 \text{ for offer}, 2 \text{ for no offer in round } t \in \{-2, -1, 0\} \]
\[r_t \in \{1, \ldots, m\}: \text{the rank-order of the worker to make an offer in round } t \in \{-2, -1, 0\} \]

THE DECENTRALIZED GAME ‘WORKER’ STRATEGY STRING
\[a_{-2}r_{-2} - a_{-1}r_{-1} - a_0r_0 \]
\[a_t \in \{1, 2\}: 1 \text{ for accept}, 2 \text{ for reject the best offer in round } t \in \{-2, -1, 0\} \]
\[r_t \in \{1, \ldots, n\}: \text{the threshold rank-order of the best firm whose offer is accepted in round } t \in \{-2, -1, 0\} \]

ANY CENTRALIZED GAME ‘FIRM’ STRATEGY STRING
\[a_{-2}r_{-2} - a_{-1}r_{-1} - r_0, r_0, r_0, \ldots, r_0, m \]
\[a_t \in \{1, 2\}: 1 \text{ for offer}, 2 \text{ for no offer in round } t \in \{-2, -1\} \]
\[r_t \in \{1, \ldots, m\}: \text{length } m \text{ rank-order list of the firm for round } 0 (r_{0,k} \in \{1, \ldots, m\}) \]

ANY CENTRALIZED GAME ‘WORKER’ STRATEGY STRING
\[r_0, r_0, r_0, \ldots, r_0, n \]
\[a_t \in \{1, 2\}: 1 \text{ for accept}, 2 \text{ for reject the best offer in round } t \in \{-2, -1\} \]
\[r_t \in \{1, \ldots, n\}: \text{the threshold rank-order of the best firm whose offer is accepted in round } t \in \{-2, -1\} \]
\[r_{0,k} \in \{1, \ldots, n\} \]

The space of rank-order lists consider all possible misrepresentations and truncations of the preferences.

Fig. 2. Representation of strategies as ‘integer’ strings in the genetic algorithm for games with two early offer rounds.

to high workers and almost always workers reject the offers. Therefore, the high worker acceptance rate is defined as the ratio of high workers who accept an offer from a high firm to the high unmatched workers who receive at least one offer from a high firm. The average number of early arrangements is the total number of arrangements in the society done in rounds -2 and -1, respectively. Basically, costs, the number of early arrangements, and offer/acceptance rates will be indicators of the evolution dynamics.

6.1. Results

The basic model is considered with 30 independent runs of the basic GA, each of 160 generations (40 decentralized + 120 decentralized/centralized market games).\(^{10}\) The basic payoffs are employed as 15 for (average) high, 5 for (average) low, 0 for unmatched. The costs for early arrangements are imposed

\(^{10}\) After the end of decentralized markets, the schemata that represent actions in Rounds -2 and -1 are communicated to the first generation of centralized game as schemata for actions in Rounds -2 and -1. In Round 0, the initial rank-order lists are randomly determined by discrete uniform density.
as $2 for round \(-2\), $1 for round \(-1\), $0 for round 0 arrangements. As described before, these values are adopted from the Kagel and Roth (2000) laboratory experiment. We study the experiments involving decentralized markets, centralized games with the priority, DA and LP matching mechanisms under the tentative and binding arrangements. We study these experiments from random initial conditions. The evolution paths look qualitatively like the Kagel and Roth (2000) experiment for the priority and DA markets. The dynamic comparisons between the acceptance and offer rates, and costs qualitatively hold for both GA and laboratory evolution. Figs. 3–16 in Appendix C summarize the results outlined in this section.

6.1.1. The decentralized matching game

In the decentralized treatment, it is observed that the total cost of unraveling increases after initial generations (as seen in Fig. 3). As seen in Figs. 4 and 5, high agents are observed to unravel more than low agents after experience accumulation. This is because high agents have higher opportunity costs to avoid mismatches. Round \(-1\) matches are higher in number than Round \(-2\) matches as seen in Figs. 7 and 8.

6.1.2. The centralized matching games

Introduction of the centralized mechanisms makes unraveling costs fall dramatically as seen in Fig. 3. This is caused by low agents who literally stop making early matches (see Fig. 5).

Under the stable DA mechanisms and the LP markets, unraveling costs approach zero in the long run (see Fig. 3). With random initial conditions, the priority markets perform most poorly under evolution in terms of costs. The major difference between the DA, LP, and priority markets appears in the acceptance ratio of high workers in Round \(-1\) (see Fig. 15). In the DA and LP markets, almost all high workers reject high firm offers in Round \(-1\). However the priority market high workers continue accepting a substantial ratio of high firm offers in Round \(-1\).

The LP markets are also differentiated among themselves. The Cambridge mechanism unravels more than the London mechanism. However in general, when the arrangements are binding, agents adapt to the mechanism and do not circumvent it. The costs and acceptance/offer rates fall further, when we consider the tentative arrangement technology. The binding arrangement treatment produces a comparable number of ex-post market matching blocking pairs with the DA mechanisms. However priority matching markets produce a much higher number of ex-post blocking pairs. The tentative arrangement treatment of the LP markets produces the lowest numbers (see Table 1). The tentative arrangement technology, by itself, presents an evolutionary evidence for the reasons unstable LP mechanisms are still in use and stopped unraveling.
<table>
<thead>
<tr>
<th>Market game</th>
<th>Pairs in the market matching that block the true revelation matching (of 6 maximum)</th>
<th>Pairs that block the market matching (of 36)</th>
<th>Early arrange.</th>
<th>Percentage of successful early arrangements (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation: 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decentralized</td>
<td>—</td>
<td>8.0610 (3.1913)</td>
<td>2.7837 (1.0036)</td>
<td>100</td>
</tr>
<tr>
<td>Generation: 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newcastle P</td>
<td>0.2178 (0.3527)</td>
<td>5.4081 (1.8168)</td>
<td>1.1692 (0.8672)</td>
<td>100</td>
</tr>
<tr>
<td>Birmingham P</td>
<td>0.2095 (0.3351)</td>
<td>4.9544 (1.8795)</td>
<td>1.2249 (0.8503)</td>
<td>100</td>
</tr>
<tr>
<td>Edinburgh'67 P</td>
<td>0.2093 (0.3025)</td>
<td>4.9539 (1.5916)</td>
<td>1.0256 (0.9102)</td>
<td>100</td>
</tr>
<tr>
<td>Edinburgh'69 DA</td>
<td>0 (0)</td>
<td>4.3600 (1.3421)</td>
<td>0.8673 (0.8615)</td>
<td>100</td>
</tr>
<tr>
<td>Cardiff DA</td>
<td>0 (0)</td>
<td>4.5583 (1.2682)</td>
<td>0.9164 (0.7449)</td>
<td>100</td>
</tr>
<tr>
<td>London LP (tent. tech.)</td>
<td>1.0807 (0.6979)</td>
<td>3.5488 (1.9867)</td>
<td>0.3194 (0.5583)</td>
<td>66.1958</td>
</tr>
<tr>
<td>Cambridge LP (tent. tech.)</td>
<td>1.7471 (0.8128)</td>
<td>4.3245 (2.3195)</td>
<td>0.5033 (0.7578)</td>
<td>88.1968</td>
</tr>
<tr>
<td>London LP (bind. tech.)</td>
<td>1.0208 (0.7196)</td>
<td>4.0567 (1.6164)</td>
<td>0.7825 (0.9474)</td>
<td>100</td>
</tr>
<tr>
<td>Cambridge LP (bind. tech.)</td>
<td>1.6111 (0.6950)</td>
<td>4.5576 (1.9314)</td>
<td>0.9970 (0.9084)</td>
<td>100</td>
</tr>
<tr>
<td>Decentralized</td>
<td>—</td>
<td>9.4629 (3.6740)</td>
<td>2.5701 (0.9153)</td>
<td>100</td>
</tr>
<tr>
<td>Generation: 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newcastle P</td>
<td>0.2616 (0.4215)</td>
<td>4.5145 (1.5217)</td>
<td>1.2321 (1.0514)</td>
<td>100</td>
</tr>
<tr>
<td>Birmingham P</td>
<td>0.2273 (0.3426)</td>
<td>5.1746 (2.0099)</td>
<td>0.698 (0.8558)</td>
<td>100</td>
</tr>
<tr>
<td>Edinburgh'67 P</td>
<td>0.4586 (0.3953)</td>
<td>5.6615 (1.9637)</td>
<td>1.0139 (0.7481)</td>
<td>100</td>
</tr>
<tr>
<td>Region</td>
<td>Generation</td>
<td>£/Year</td>
<td>£/Year</td>
<td>£/Year</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Edinburgh'69 DA</td>
<td>0 (0)</td>
<td>3.9886 (1.6239)</td>
<td>0.3152 (0.5932)</td>
<td>100</td>
</tr>
<tr>
<td>Cardiff DA</td>
<td>0 (0)</td>
<td>3.6978 (1.4764)</td>
<td>0.3663 (0.5912)</td>
<td>100</td>
</tr>
<tr>
<td>London LP (tent. tech.)</td>
<td>1.3150 (0.8121)</td>
<td>2.4404 (1.5322)</td>
<td>0.1274 (0.1763)</td>
<td>59.2133</td>
</tr>
<tr>
<td>Cambridge LP (tent. tech.)</td>
<td>1.7794 (0.5869)</td>
<td>3.6264 (1.9608)</td>
<td>0.3220 (0.4980)</td>
<td>89.4701</td>
</tr>
<tr>
<td>London LP (bind. tech.)</td>
<td>1.3370 (0.6228)</td>
<td>3.0680 (2.0191)</td>
<td>0.2140 (0.4239)</td>
<td>100</td>
</tr>
<tr>
<td>Cambridge LP (bind. tech.)</td>
<td>1.6839 (0.6329)</td>
<td>4.3344 (2.1775)</td>
<td>0.3853 (0.5514)</td>
<td>100</td>
</tr>
<tr>
<td>Decentralized</td>
<td>—</td>
<td>8.7771 (4.3224)</td>
<td>2.4868 (0.7253)</td>
<td>100</td>
</tr>
<tr>
<td>Generation: 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newcastle P</td>
<td>0.1871 (0.3196)</td>
<td>4.6220 (1.3655)</td>
<td>0.7313 (0.8245)</td>
<td>100</td>
</tr>
<tr>
<td>Birmingham P</td>
<td>0.2147 (0.3667)</td>
<td>5.0770 (2.1852)</td>
<td>0.6737 (0.9153)</td>
<td>100</td>
</tr>
<tr>
<td>Edinburgh'67 P</td>
<td>0.4294 (0.4066)</td>
<td>4.7671 (2.1735)</td>
<td>0.7384 (0.8005)</td>
<td>100</td>
</tr>
<tr>
<td>Edinburgh'69 DA</td>
<td>0 (0)</td>
<td>3.7240 (1.8856)</td>
<td>0.1628 (0.1977)</td>
<td>100</td>
</tr>
<tr>
<td>Cardiff DA</td>
<td>0 (0)</td>
<td>3.6538 (1.5186)</td>
<td>0.2796 (0.4586)</td>
<td>100</td>
</tr>
<tr>
<td>London LP (tent. tech.)</td>
<td>0.9041 (0.7526)</td>
<td>2.2565 (1.5883)</td>
<td>0.1351 (0.2236)</td>
<td>73.2991</td>
</tr>
<tr>
<td>Cambridge LP (tent. tech.)</td>
<td>1.5565 (0.7012)</td>
<td>3.4796 (2.1461)</td>
<td>0.1228 (0.1855)</td>
<td>82.0637</td>
</tr>
<tr>
<td>London LP (bind. tech.)</td>
<td>0.9181 (0.7989)</td>
<td>2.8506 (1.9186)</td>
<td>0.1404 (0.2160)</td>
<td>100</td>
</tr>
<tr>
<td>Cambridge LP (bind. tech.)</td>
<td>1.6750 (0.6911)</td>
<td>3.4046 (2.3245)</td>
<td>0.4200 (0.6109)</td>
<td>100</td>
</tr>
<tr>
<td>Decentralized</td>
<td>—</td>
<td>8.4086 (4.1839)</td>
<td>2.7106 (0.8800)</td>
<td>100</td>
</tr>
</tbody>
</table>
6.1.3. Strategy evolution

Each treatment’s strategy evolution converges to different sets. The fitness of a strategy shows the rate of increase of the population of a specific schema. For example the offer/acceptance schemata in the strategies are different. A priority market high workers still tend to accept offers from the high firms in round — 1. (In Newcastle, the percentage of such schema is 27.85% of all population and is the highest percentage among other schemata in generations 121–160.) In the DA and LP markets, schema involving no acceptances in rounds — 2 and — 1 are in the highest ratio. (For example the Edinburgh’69 market involves such schema 59.77% in population in generations 121–160, for the London market under tentative arrangements 56.23%.) We do not observe a clear convergence in the rank-order submission schemata of the mechanisms. However the length of the rank-order lists are shortest under the LP markets and longest under the DA market for the high agents.

6.1.4. Efficiency of mechanisms

We consider the total payoff to maximum payoff ratio for a measure of overall efficiency. According to this measure, the LP market agents reach 97.4% of total payoff under the tentative arrangement treatment, 96.5% under the binding arrangement treatment. The DA market agents reach 96.3%, the priority market agents reach 92.5% and the decentralized market agents obtain 73.5% of the maximum payoffs. (See Fig. 6).

6.2. Summary for randomly chosen initial strategies

We use a simple normal regression model to find the differences between evolution processes of the ‘average total cost of unraveling’ under 10 different markets/institutions with our random initial condition experiments. One of the models is presented below. Note that we find a strong autoregressive process for the error terms. Therefore, we make a 2-step FGLS estimation of the average total cost of unraveling, $c_{i,g}$ by first estimating ϕ and then estimating regression coefficients.

$$c_{i,g} = \beta_i + \frac{z_i}{g - g_0} + \gamma \overline{v}_r(v_H) + \varepsilon_{i,g},$$

$$\varepsilon_{i,g} = \phi \varepsilon_{i,g-1} + \eta_{i,g},$$

for i denoting one of the 10 market treatments.

$$\eta_{i,g} \sim \text{N}(0, \sigma^2)$$

and g, generations, change from 41 to 160 (i.e., the era after the artificial agents gain experience in the decentralized market) so that $g_0 = 40$, $\overline{v}_r(v_H)$ is the
average payoff from a high agent ($15 in original, $10 in subsequent experiments), \(\alpha_i \) the speed parameter for decrease in cost, \(\beta_i \) the constant dummy coefficient denote the market specific coefficients for 10 of the markets/institutions with their relevant subscripts \(i \).^{11} \] Table 2 presents the FGLS estimates of coefficients. Table 3 presents some simple hypotheses testing results. We use market specific variables to capture the individual effects of each of the mechanisms after pooling all data to estimate \(\gamma \). We change the average payoff from the high type agents in some of the simulations. This captures the payoff effects. This is particularly important because the Kagel and Roth (2000) study includes different sessions when high type agent payoffs are on average $10 and $15. On average their findings conjecture a direct relationship between the cost of unraveling and average payoff from the high types. We try to characterize those effects in our regression equation and in our GA model. To capture the indirect relationship between cost and generations after \(g_0 = 40 \), we use \(1/(g - g_0) \) as one of the regressors.\(^{12} \]

The payoff coefficient (\(\gamma \)) is found positive and significant. Therefore, we find the same payoff effect that Kagel and Roth found in their laboratory experiments. The average cost of unraveling is affected by the payoff from high types directly. Following Table 3, the null hypotheses involving the equality of speed of decrease in average cost within the priority mechanisms, within the LP mechanisms under the tentative transactions, within LP mechanisms under the binding arrangement technology, and within the DA mechanisms are not rejected. The slowest decrease is seen under the decentralized market, followed by the priority matching markets. DA mechanism and LP mixed games with binding transactions lead to comparable speeds of convergence, although DA mixed market speeds seem faster. The fastest decrease is observed under the LP mixed markets with tentative transaction game. The next test asks whether the speed of decrease is equal under two different institutional restrictions in the LP markets: hypothesis is not rejected. Then, we determine whether the DA and LP mechanisms under binding technology generate similar processes although the speed estimates are significantly different. We test whether speed coefficients of priority and DA markets are the same: the null hypothesis is rejected. It is next tested whether speed coefficients of the priority and the LP markets under the binding technology are the same: the null hypothesis is rejected. Then, we test whether all the centralized mechanisms have the same convergence speed under the binding arrangement technology: the coefficients are not equal to each other.

\(^{11}\) The subscripts are NE for the Newcastle priority, BI for the Birmingham priority, ED’67 for the Edinburgh’67 priority, ED’69 for the Edinburgh’69 DA, CR for the Cardiff DA, LO for the London LP and CM for the Cambridge LP mechanisms. We use DC to denote the decentralized markets.

\(^{12}\) We also run different linear regressions using different regressors such as log generation. Those usually give similar results with those found below in presence of AR(1) process.
The next set of tests are about the asymptotic values of costs under the centralized mechanisms. This asymptotic estimate is determined to be \(\hat{c}_{i,g} \) for \(g = 160 \). So we test whether \(a_i/120 + b_i = a_j/120 + b_j \) for different markets \(i \) and \(j \). Following Table 4 the LP market asymptotic values of costs are different under binding and tentative transaction mixed games. Also under tentative technology, the London LP mixed markets have significantly lower average costs than the Cambridge LP mixed markets asymptotically. The LP markets under the binding arrangements and the DA markets have similar asymptotic cost values. As seen in Table 4, the other test results are the same as the corresponding results from the speed comparisons. The magnitude order of dummy coefficients is displayed in Table 2. Hence, the priority markets unravel significantly more than others do (the differences in dummy coefficients are

<table>
<thead>
<tr>
<th>GLS coefficients</th>
<th>Estimate</th>
<th>Standard error</th>
<th>t-Statistic</th>
<th>p-Value (2 sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\gamma})</td>
<td>0.0553</td>
<td>0.0119</td>
<td>4.6550</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Speed coefficient estimates

- \(a_{SE} \) priority: 4.5417, 0.2733, 16.6190, 0.0000
- \(a_{BE} \) priority: 5.0818, 0.2360, 21.5284, 0.0000
- \(a_{ED_{67}} \) Priority: 4.9885, 0.2359, 21.1465, 0.0000
- \(a_{ED_{69}} \) DA: 5.7941, 0.2359, 24.5613, 0.0000
- \(a_{CR} \) DA: 5.7859, 0.2359, 24.5268, 0.0000
- \(a_{LO-tent. \ LP} \): 5.6910, 0.2359, 24.1243, 0.0000
- \(a_{CM-tent. \ LP} \): 6.2455, 0.2359, 26.4747, 0.0000
- \(a_{LO-bind. \ LP} \): 5.8518, 0.2359, 24.0373, 0.0000
- \(a_{CM-bind. \ LP} \): 5.6796, 0.2363, 24.0373, 0.0000
- \(a_{DC} \) decentralized: 1.8476, 0.2359, 7.8321, 0.0000

Constant dummy coefficient estimates

- \(b_{SE} \) priority: 2.0030, 0.1990, 10.0676, 0.0000
- \(b_{BE} \) priority: 1.8949, 0.1942, 9.7557, 0.0000
- \(b_{ED_{67}} \) priority: 2.0997, 0.1940, 10.8228, 0.0000
- \(b_{ED_{69}} \) DA: 1.0146, 0.1940, 5.2295, 0.0000
- \(b_{CR} \) DA: 1.1203, 0.1940, 5.7745, 0.0000
- \(b_{LO-tent. \ LP} \): -0.0206, 0.1940, -0.1064, 0.9152
- \(b_{CM-tent. \ LP} \): 0.4336, 0.1937, 2.2385, 0.0253
- \(b_{LO-bind. \ LP} \): 0.7292, 0.1940, 3.7587, 0.0002
- \(b_{CM-bind. \ LP} \): 0.9752, 0.1911, 5.1034, 0.0000
- \(b_{DC} \) decentralized: 5.5505, 0.1940, 28.6092, 0.0000

Coeficient of determination: 0.7389
\(\hat{\phi} = 0.8366 \)
Wald stat = 5548.5
\(p = 0.0000 \)
Table 3
Hypothesis testing for FGLS estimation of cost data

<table>
<thead>
<tr>
<th>H_0</th>
<th>Statistics</th>
<th>Degrees of freedom</th>
<th>Decision for 5% level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef. of payoff from high agents > 0</td>
<td>$t_{-\text{stat}} = 4.6550$ $p_{-\text{value}} = 0.0000$</td>
<td>2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of priority mechanisms equal to each other</td>
<td>$f_{-\text{stat}} = 1.2064$ $p_{-\text{value}} = 0.2095$</td>
<td>2, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of d.a. mechanisms equal to each other</td>
<td>$f_{-\text{stat}} = 0.0006$ $p_{-\text{value}} = 0.9809$</td>
<td>1, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of l.p. mechanism tent. tech. dummies equal to each other</td>
<td>$f_{-\text{stat}} = 2.7552$ $p_{-\text{value}} = 0.0971$</td>
<td>1, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of l.p. mechanism bind. tech. dummies equal to each other</td>
<td>$f_{-\text{stat}} = 0.2654$ $p_{-\text{value}} = 0.6065$</td>
<td>1, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of dummies of l.p. tent. tech. and bind. tech. are equal</td>
<td>$f_{-\text{stat}} = 1.8241$ $p_{-\text{value}} = 0.1406$</td>
<td>2, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Speed of l.p. bind. tech. and d.a. mech. same</td>
<td>$f_{-\text{stat}} = 0.0922$ $p_{-\text{value}} = 0.9644$</td>
<td>3, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Speed of priority and d.a. mech. same</td>
<td>$f_{-\text{stat}} = 4.7398$ $p_{-\text{value}} = 0.0008$</td>
<td>4, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Speed of priority and l.p. bind. tech. dummies same</td>
<td>$f_{-\text{stat}} = 4.5921$ $p_{-\text{value}} = 0.0011$</td>
<td>4, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Speed of all centralized mechanism dummies equal under bind. tech.</td>
<td>$f_{-\text{stat}} = 4.1905$ $p_{-\text{value}} = 0.0003$</td>
<td>6, 2386</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

significant). The binding early arrangements produce similar results within the LP and within the DA markets. The order of the asymptotic costs can be given as: decentralized markets > priority mixed markets > LP mixed markets with binding transactions and DA mixed markets > LP mixed markets with tentative transactions. One can follow Tables 3 and 4 for the statistic values of the tests mentioned above.

We also make a sensitivity analysis for the GA evolution.13

13Sensitivity analysis: Same experiments are run for different parameter values under ceteris paribus:

Genetic Operator Changes:

Increase in the mutation rate: The uniform mutation rate for each digit of the strategy strings is increased from 5% to 20%. Average total cost of unraveling does not decrease as fast as it does before. But ordinality of results stay unchanged. The costs did not converge.
7. Conclusions

This study considers the adjustment dynamics of agents to three types of two-sided matching mechanisms that came into use in the field in Britain after a decentralized matching era. Unraveling is studied with specific matching games with several rounds of clearance. We use a GA in the evolutionary programming framework. Static game-theoretic analyses fail to explain the field success of a class of theoretically unstable mechanisms. Analytical evolutionary analyses seem limited to examine the complex matching games for equilibrium selection. The main contribution of this paper is a dynamic analysis of unraveling using GAs.

Footnote 13 continued

Decrease in the crossover rate: The uniform crossover rate is decreased from 90% to 50%. Average total cost of unraveling increases above the original experiment’s levels. Ordering of costs among mechanisms does not change. The costs did not settle down as fast.

Change in the reproduction operator: We adopt biased-roulette-wheel selection instead of first-past-the-post. According to selected bias, we observe slower convergence and higher costs.

Change in the crossover operator: Instead of linear crossover, we consider circular version. The convergence results occur slightly faster; we observe lower costs.

Change in the initial conditions: Suppose that instead of random rank-order list generation in round 0, we consider truthful revelation (straightforward) of rank-order lists in the centralized games. In the short run, the LP markets unravel ‘most’ under both communication technologies. The priority markets unravel earlier than the DA markets do but not as much as the LP markets do. In the long run we return to our prior findings: the LP markets under the tentative arrangement technology unravel least, which are followed by the DA and LP markets under the binding arrangement technology. Finally, priority markets unravel most in the long run.

Change in strategy form: When we assume agents only decide for offers and acceptances but do not make decisions on rank-order lists instead always submit full truthful lists, we observe that DA mechanism is most successful algorithm. Priority and LP tentative, LP binding treatments have less success in preventing early contracts.

Changes in model parameters: We consider two changes in the model parameters.

The first one is increase in the range of the random parameter in the payoff: The random parameter $\theta_{f,w}$ for firm f for each w and $\theta_{w,f}$ for the worker w for each f (described in Section 3) are drawn from $U(-2.5,2.5)$ instead of $U(-1,1)$ independently and identically. The average cost of unraveling is observed to increase for the unstable markets slightly and decrease for the stable markets slightly. Under the binding arrangement technology, DA markets lead to comparable levels of unraveling with the LP markets. Both lead to lower number of early arrangements than the priority markets.

The second is a change in the average payoff from the high type agents: Average payoff from the high, v, when v is a high agent is then set to 10 and 100, instead of 15. When it was set to 10, the total cost of unraveling on average fell for all the markets, and when it was set to 100, the total cost of unraveling on average increased for all the markets over $t_v = 15$ (for v is high) levels. The major difference was the rate of acceptances done by the high workers in round -1. The rates were highest for $t_v = 100$ (for v is high) and lowest for $t_v = 10$ (for v is high). Also high firms make more offers in round -1 for $t_v = 100$ (for v is high).
Table 4
Hypotheses testing for asymptotic values of cost

<table>
<thead>
<tr>
<th>H_0</th>
<th>Statistics</th>
<th>Degrees of freedom</th>
<th>Decision for 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymp. cost of priority mechanisms equal to each other</td>
<td>$f_{-stat} = 0.6762$</td>
<td>2, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Asymp. cost of d.a. mechanisms equal to each other</td>
<td>$f_{-stat} = 0.3846$</td>
<td>1, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Cost of l.p. mechanism tent. games equal to each other</td>
<td>$f_{-stat} = 6.8482$</td>
<td>1, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Cost of l.p. mechanism bind. games equal to each other</td>
<td>$f_{-stat} = 1.8941$</td>
<td>1, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Cost of l.p. tent. tech. and bind. tech. are equal</td>
<td>$f_{-stat} = 18.2170$</td>
<td>2, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Cost of l.p. bind. tech. and d.a. mech. same</td>
<td>$f_{-stat} = 1.7488$</td>
<td>3, 2386</td>
<td>Not rejected</td>
</tr>
<tr>
<td>Cost of priority and d.a. mech. same</td>
<td>$f_{-stat} = 17.0391$</td>
<td>4, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Cost of priority and l.p. bind. tech. same</td>
<td>$f_{-stat} = 25.3097$</td>
<td>4, 2386</td>
<td>Rejected</td>
</tr>
<tr>
<td>Cost of all centralized mechanisms equal under bind. tech.</td>
<td>$f_{-stat} = 20.6003$</td>
<td>6, 2386</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

The GA serves as an evolution environment to study learning under incomplete private information. The learning occurs through communication and transmission of experience. Following Kagel and Roth’s (2000) experimental design, we assume that both firms and workers are permanent players.

In summary, decentralized market evolution leads to unraveling for both better and less qualified agents. Less qualified agents do not unravel once centralized mechanisms are introduced. We find asymptotic evolution paths with low levels of unraveling for highly unstable LP markets. These are also successful in the field in Britain. We find also qualitative evidence for plausibility of an evolution process in Kagel and Roth’s (2000) experiment. The unstable priority matching mechanisms that failed in the field and laboratory also perform most poorly in the evolution environment in terms of costs.

The difference between the priority and LP mechanisms arises from the intrinsic optimization procedure used in the LP mechanisms. For agents, manipulation of rank order lists occur under the centralized games. The difference in the evolution stage indicates that early offers and acceptances are in higher
percentages under the priority mechanisms than they are under the LP mechanisms.

When we consider different initial conditions, the stability results hold only asymptotically. For example, if inexperienced agents submit truthful rank-order lists as they would in the laboratory, ‘LP markets unravel the most’ in the short run.

In the literature, the unraveling issue has mostly been considered in a static framework. However, field results show that, unstable mechanisms that are not susceptible to unraveling do exist. It seems necessary to consider models of adaptive behavior to illuminate the dynamics observed in the field when new market institutions are introduced. Computational tools of modern game theory present such opportunities.

Appendix A. Preliminaries about the marriage model (Section 3)

Marriage model is used to analyze the unraveling problem in entry-level labor markets. The models in the literature are based mostly on works of Roth, Sotomayor, Gale and Shapley. Here, this general framework will be presented briefly. The set of players \(N = F \cup W \) (such that \(F \cap W = \emptyset \)) consists of the set of firms \(F = \{f_1, f_2, \ldots, f_n\} \) and the set of workers \(W = \{w_1, w_2, \ldots, w_m\} \) where each firm can hire one worker, while one worker can work for one firm. The preferences of each worker \(w \in W \) over firms and herself are denoted by \(P(w) \), an ordered list of elements in \(\{w\} \cup F \). Similarly the preferences of each firm \(f \in F \) over workers and itself, \(P(f) \) is an ordered list of elements of \(\{f\} \cup W \). All preferences are assumed to be rational (i.e., complete and transitive). Let ‘ \(\geq_{P(v)} \) ’ denote ‘weak preference’ relation and ‘ \(>_{P(v)} \) ’ denote ‘strict preference’ relation with respect to the preference list \(P(v) \), the component of the preference profile \(P \) for the agent \(v \). A worker \(w \) is acceptable given \(P(f) \) to firm \(f \) if \(w \geq_{P(f)} f \). Similarly a firm \(f \) is acceptable given \(P(w) \) to worker \(w \) if \(f \geq_{P(w)} w \). Let \(P = (P(f_1), \ldots, P(f_n), P(w_1), \ldots, P(w_m)) \). Now suppose \(\mathcal{P} \) is the set of rational and admissible preference profiles on \(N \) so that \(P \in \mathcal{P} \).

We can now define a one-to-one matching.

Definition A.1. A one-to-one matching \(\mu \) in the market is a function defined on the set of players. Formally \(\mu : N \rightarrow N \). \(\mu \) satisfies \(\forall w \in W \) and \(\forall f \in F \): (i) \(\mu(w) = f \) if and only if \(w = \mu(f) \), (ii) \(\mu(w) = w \), if \(\mu(w) \notin F \), and (iii) \(\mu(f) = f \), if \(\mu(f) \notin W \).

Workers (firms) have preferences over matchings identical to their preferences over firms (workers) and themselves. A matching \(\mu \) is said to be individually rational given \(P(v) \) if \(\forall v \in N \mu(v) \geq_{P(v)} v \). A matching \(\mu \) is stable given \(P \), if it is individually rational given \(P \) and if there exist no \(f \in F \) and \(w \in W \) such that
\(\mu(w) \neq f, w > p(f, \mu(f)) \) and \(f > p(w, \mu(w)) \). Let \(\mathcal{M} \) be the set of matchings defined on \(N \).

There exists at least one stable matching for any set of players and rational strict preference profiles.\(^{14}\) A matching mechanism, is defined by a function \(\pi: \mathcal{P} \rightarrow \mathcal{M} \). A mechanism is stable within \(\mathcal{P} \) if there exists no \(P \in \mathcal{P} \) such that \(\pi[P] \) is unstable. A mechanism is individually rational within \(\mathcal{P} \) if \(\pi[P] \) is individually rational for all \(P \in \mathcal{P} \). Unless otherwise denoted, let \(\pi \) denote also the matching \(\pi[P] \) under the true preferences \(P \). A matching problem is denoted by a set of firms, a set of workers, a preference profile and a mechanism such as \((F, W, P, \pi)\).

Suppose that preferences of agents over individuals are strict. Therefore, suppose that \(\mathcal{P} \) is further restricted in this sense. There exists a unique stable matching \(\mu_W \) which is weakly preferred to any other stable matching by all workers in \(W \), at least one of the weak preferences is strict. Moreover there exists a unique stable matching \(\mu_F \) which is weakly preferred to any other stable matching by all firms in \(F \), at least one of the weak preferences is strict. \(\mu_F \) is known to be the F(irm)-optimal stable matching. \(\mu_W \) is known to be the W(orker)-optimal stable matching.\(^{15}\) Firm proposing DA algorithm determines \(\mu_F \) given the rank-order lists \(Q \), worker proposing DA algorithm determines \(\mu_W \) given the rank-order lists \(Q \). The other mechanisms are described in Section 2. Let \(P(v, k) \) denote the kth ranked agent in the preference of \(v \in N, P(v) \). A match between firm \(f \), and worker \(w \) is a \((k, l)\) match given the rank-order list profile \(Q \) if \(Q(f, l) = w \) and \(Q(w, k) = f \).

One simple example can show that the Birmingham priority, \(\mu_{BI} \), the London LP, \(\mu_{LO} \), mechanisms are unstable. Reader can verify for other priority and LP mechanisms.

Example A.1. If \(P(f_1) = (w_1, w_2, w_3) \), \(P(f_2) = (w_2, w_1, w_3) \), \(P(f_3) = (w_2) \), \(P(w_1) = (f_3, f_2, f_1) \), \(P(w_2) = (f_3) \), \(P(w_3) = (f_2, f_1) \) then \(\mu_{BI}(f_1) = \mu_{LO}(f_1) = w_1 \), \(\mu_{BI}(f_2) = \mu_{LO}(f_2) = w_3 \), \(\mu_{BI}(f_3) = \mu_{LO}(f_3) = w_2 \). For the London LP mechanism, this creates the weight 57 for \((1,3)\) + 57 for \((3,1)\) + 72 for \((1,1)\) = 186 as maximum. The only stable matching is \(\mu(f_1) = w_3 \), \(\mu(f_2) = w_1 \), \(\mu(f_3) = w_2 \). It creates the weight 49 for \((3,2)\) + 56 for \((2,2)\) + 72 for \((1,1)\) = 177. Note that \(w_1 > p(f_3)w_3 \) and \(f_2 > p(w_3)f_1 \).

Also \((1,1)\) matches might not be realized under the London LP mechanism. It can also be verified for the Cambridge LP mechanism.

\(^{14}\) Theorem proven by Gale and Shapley (1962).

\(^{15}\) A result by Gale and Shapley (1962).
Example A.2. If $P(f_1) = (w_3, w_2, w_1)$, $P(f_2) = (w_2, w_1, w_3)$, $P(f_3) = (w_2, w_1, w_3)$, $P(w_1) = (f_3, f_2, f_1)$, $P(w_2) = (f_3, f_2, f_1)$, $P(w_3) = (f_2)$. Then the highest weighted matching μ that realizes f_3, w_2 (1,1) match is $\mu(f_1) = w_1$, $\mu(f_2) = w_3$ and $\mu(f_3) = w_2$ brings the weight 42 for (3,3), 57 for (3,1), 72 for (1,1) a total of 171. However the following matching π brings the weight 177 as maximum $\pi(f_1) = w_2$, $\pi(f_2) = w_3$, $\pi(f_3) = w_1$ with 56 for (2,2), 57 for (1,3), 64 for (2,1) matches.

By the revelation principle, we can focus on the matching mechanisms under rank-order list submission games. Stability of a mechanism appears as a cooperative, complete information issue. A matching is stable if and only if it is in the core of the mechanism rank-order list submission game. Theory also implies that there exist no incentive-compatible mechanisms under complete information.

Appendix B. Proofs (Section 4)

Proof of Lemma 1 (sketch). First note that this is true for the assigned parameter values under the computational model: To see this, consider the strategy $s \in S$ which tells for firms, no offers in rounds -2 and -1; for workers, no acceptances in rounds -2 and -1; for all agents, submit rank-order lists that rank agents of own type of the other side in round 0 truthfully. This is the profile Q with high firms (workers) listing only high workers (firms) and with low firms (workers) listing only low workers (firms). This strategy s has an outcome involving no-mismatches between high and low type of agents.

Now, we need to show that s is an equilibrium in the mixed games with DA or priority mechanisms. It is straightforward to verify for the DA mechanisms: This is the same outcome with truthful revelation of lists in round 0, and by Lemma 3 this is an equilibrium.

For the priority mechanisms consider the following deviation: if an agent $v \in N$ omits her worst agent of her own type from rank-order list. Given that being unmatched brings the zero payoff, s brings more utility for a high firm f than this most profitable unilateral deviation if and only if $718u_f(P(f,3)) > 37u_f(P(f,1)) + 56u_f(P(f,2))$. Strategy s brings more utility for a high worker w than this most profitable deviation if and only if $183u_w(P(w,3)) > 8u_w(P(w,2))$. We find the inequalities as follows: We consider all possible preference configurations and calculate the mechanism outcome for each configuration for both strategy profiles. Then we find and compare the expected payoffs of agents under both strategy profiles. Both inequalities are clearly satisfied by our parameter values. (A similar expression is found for low agents.) For the Birmingham mechanism, we change the places of...
workers with firms. Moreover, reader can verify for the Edinburgh (1967) mechanism.

In the decentralized game, such strategies which satisfy the requirements in the hypothesis do not exist: Consider any strategy \(s \) that is symmetric and early arrangement free. Since firms of a same type offer in terms of same rank-order, they will offer to a same worker with positive probability in round 0. At least, one firm will be unmatched with positive probability. \(\square \)

Proof of Lemma 2 (sketch). One set of weakly undominated strategies in terms of rank-orders with the properties in the hypothesis are ‘making no early arrangements and listing own type of agents of the other side of market in round 0’. Moreover by symmetry, non-truthful revelation of the preferences over the same type agents of other side is stochastically dominated by truthful revelation.

So, without loss of generality, consider the rank-order lists of round 0 that consist of high (or low) firms ranking only high (or low) workers in order with their true preferences, and high (or low) workers ranking only high (or low) firms in order with their true preferences. This random rank-order list profile \(\bar{P} \) can be represented for high firms by \(\bar{P}(f) = (\bar{P}(f, 1), \ldots, \bar{P}(f, m/2)) \), high workers \(\bar{P}(w) = (\bar{P}(w, 1), \ldots, \bar{P}(w, n/2)) \), low firms by \(\bar{P}(f) = (\bar{P}(f, m/2 + 1), \ldots, \bar{P}(f, m)) \), low workers by \(\bar{P}(w) = (\bar{P}(w, n/2 + 1), \ldots, \bar{P}(w, n)) \). Let \(f \) be a high firm only ranking his first choice by deviating from these profiles i.e. \(P'(f) = (P(f, 1)) \).

Consider the matching problems \(A = (F_H, W_H, (P'(f), \bar{P}_{H-f}), \mu_{LO}) \) versus \(B = (F_H, W_H, (P'(f), \bar{P}_{H-f}), \mu_{LO}) \) using the London matching mechanism \(\mu_{LO} \) for high type agents.

Consider that \(m = 6, n = 6. \) and the weights (actual weights used in London) 36, 28, 21, 15, 10, 6 for choices ranked 1 to 6. Now under \(B \), consider any match that leaves \(f \) unmatched and brings total weight ‘\(a \)’ under a realization of preferences \(P \). Let \(f' \) be match of \(P(f, 1) \) under this realization. Now if we match \(f \) with \(P(f, 1) \) this will bring at least (1, 3) match weight 36 + 21 = 57, and match \(f' \) with \(w \), where \(w = P(f, 2) \) if \(P(f, 2) > P(f, 3), P(f, 3), w = P(f, 3) \) otherwise, this will bring at least (3, 3) match weight 21 + 21 = 42. But we might have broken at best a (1, 1) match between \(P(f, 1) \) and \(f' \) with a loss of weight 36 + 36 = 72. So, for every realization of preferences, a matching that leaves \(f \) unmatched will bring at least 27 less weight than a matching where \(f \) is matched to only ranked choice, \(P(f, 1) \), 1st choice. Therefore, in the outcome matching of problem \(B \), \(f \) will never be unmatched and will be matched to \(P(f, 1) \). In problem \(A \): \(Pr \{ \mu_{LLP}[P'(f), \bar{P}_{H-f}](f) < P(f, 1) \} > 0 \). i.e. with positive probability \(f \) can be matched to its 2nd or 3rd choices. Thus, outcome of \(B \) is preferable to \(A \) for \(f \). Therefore, \(f \) has an incentive to truncate its rank-order list under the symmetric strategy profile mentioned above. Similarly, it can be stated for any symmetric strategy profile in rank-orders that a high (or low) agent has incentive to deviate. So a symmetric strategy profile in rank-orders cannot institute an equilibrium.
with no-early arrangements no mismatches and non-empty rank-order list submission.

A similar proof can be stated for the Cambridge mechanism. □

\textit{Proof of Lemma 3} (sketch). Consider the firm proposing DA mechanism, \(\mu_F\). By Theorem 4.7 of Roth and Sotomayor (1990), it is dominant for firms to reveal their preferences truthfully. Consider workers. Now we have the original matching problem \((F, W, \bar{P}, \mu_F)\). By stability of \(\mu_F\) we know that in the outcome, there are no mismatches across types of agents. Now we can replace the original preferences of high-type firms (high-type workers) by the preference profiles in which they rank only high-type workers (high-type firms) truthfully: For high firms \(\bar{P}(f) = (\bar{P}(f, 1), \ldots, \bar{P}(f, m/2))\) and for high workers \(\bar{P}(w) = (\bar{P}(w, 1), \ldots, \bar{P}(w, n/2)).\) Then we can also replace the preferences of low-type firms (low-type workers) with lists in which they rank only low-type workers (low-type firms) truthfully without changing the outcome of the direct revelation game: For low firms by \(\bar{P}(f) = (\bar{P}(f, m/2 + 1), \ldots, \bar{P}(f, m))\) and for low workers by \(\bar{P}(w) = (\bar{P}(w, n/2 + 1), \ldots, \bar{P}(w, n)).\) Now the matching problem \((F, W, \bar{P}, \mu_F)\) is equivalent to \((F, W, \bar{P}, \mu_F).\) Let \(H = F_H \cup W_H\) and \(L = F_L \cup W_L.\) Moreover, we can divide this into two sub-problems matching within high-type agents and matching within low-type agents \(A = (F_H, W_H, \bar{P}_H, \mu_F)\) and \(B = (F_L, W_L, \bar{P}_L, \mu_F).\) Now \(\bar{P}_L\) and \(\bar{P}_H\) are symmetric, respectively. Moreover being unmatched is the least preferable choice, i.e. \(\bar{P}\) involves \(v' > p(v) v\) for all \(v' \in \text{mate set of } v\) for all \(P(v) \in \mathcal{P}_v.\)

By Corollary 5 by Roth and Rothblum (1999), it is stochastically dominant for workers to reveal \(P(w)\) or truncations of \(P(w)\) over any other misrepresentation in sub-problems. Moreover, by truncating one high (low) firm from her rank-order list, a high (low) worker \(w\) has risk to be unmatched. Given that being unmatched brings a zero payoff, truthful revelation is more profitable for a high worker than the best possible unilateral deviation if and only if \(718u_w(P(w, 3)) > 37u_f(P(w, 1)) + 56u_u(P(w, 2)).\) This inequality is satisfied by our parameters. We find this inequality by considering all possible preference configurations and calculating the mechanism outcome for each of the configurations in both strategy profiles. Then we compare the expected payoffs of the high worker under both strategy profiles. (A similar relationship can be stated for a low worker.)

Since matching problems \(A\) and \(B\) is equivalent to the original matching problem with the truthful revelation of preferences, ‘truthful revelation of preferences’ is an equilibrium.

Proof can be modified for worker proposing DA mechanism \(\mu_w.\) □
Appendix C

Evolution Experiments (Section 6) with Random Initial Strategies. Payoffs: (Figs. 3–20). $15 (average high)-$5 (average low) -$0 (unmatched). Costs: $2(round − 2)-$1(round − 1).

![Graph of Total Cost of Unraveling](image-url)
Fig. 4.

Cost of Unraveling: High Type Agents

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized

Fig. 5.

Cost of Unraveling: Low Type Agents

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized

Generations
Mean of 30 runs. First 40 generations are under the decentralized game for each treatment. Genetic Operators: Mutation Probability: 0.05, Crossover Probability 0.90, Reproduction of Best Strategy for Each Type, 28 Strategies in One Generation.

Fig. 6.
Fig. 7. Number of Arrangements in round -2

Fig. 8. Number of Arrangements in round -1
Fig. 9.

Fig. 10.
Fig. 11.

High Worker Acceptance Rate in Round -2

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized

Fig. 12.

Low Worker Acceptance Rate in Round -2

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized

Generations

1.5 11.15 21.25 31.35 41.45 51.55 61.65 71.75 81.85 91.95 101.105 111.115 121.125 131.135 141.145 151.155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Decentralized

Decentralized
Fig. 13.

Fig. 14.
Fig. 15. High Worker Acceptance Rate in round -1

Fig. 16. Low Worker Acceptance Rate in round -1
Fig. 17.

Unmatched Rate: High Firms

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized

Fig. 18.

Unmatched Rate: High Workers

- Priority
- D.A.
- L.P.-binding arr.
- L.P.-tentative arr.
- Decentralized
Fig. 19.

Unmatched Rate: Low Firms

Fig. 20.

Unmatched Rate: Low Workers
Appendix D

Evolution Experiments II (Footnote 12). Initial Straightforward Revelation of Rank-Order Lists in Round 0 of the Centralized Games. Payoffs: $15(ave. H)-$5(ave. L)-$0(unmatch.). Costs: $2(round − 2)-$1(round − 1) (Figs. 21−25).

Mean of 30 runs. First 40 generations are under the decentralized game for each treatment. Genetic Operators: Mutation Probability: 0.05, Crossover Probability 0.90, Reproduction of Best Strategy for Each Type, 28 Strategies in One Generation.
Fig. 22.

Fig. 23.

Fig. 24.
References