Author Index to Volumes 91–100 (1998)

(For the sake of simplicity and uniformity, all names beginning with articles or prepositions are listed as if written as single words.)

Abou-Dina, M.S. and M.A. Helal, Reduction for the nonlinear problem of fluid waves to a system of integro-di↵erential equations with an oceanographical application 95 (1998) 65–81

Adamchik, V.S., Polygamma functions of negative order 100 (1998) 191–199

Adamchik, V.S., see Miller, J. 100 (1998) 201–206

Akdogu, E., see Bricher, S. 97 (1998) 23–37

Al-Homidan, S., Hybrid methods for solving the educational testing problem 91 (1998) 31–45

Álvarez de Morales, M., T.E. Pérez and M.A. Piñar, Sobolev orthogonality for the Gegenbauer polynomials \{C_n^{(N+1/2)}\}_{n \geq 0} 100 (1998) 111–120

Elsevier Science B.V.
Aptekarev, A.I., Multiple orthogonal polynomials 99 (1998) 423–447
Area, I., see Godoy, E. 99 (1998) 177–187
Area, I., see Ronveaux, A. 99 (1998) 327–335
Area, I., see Godoy, E. 91 (1998) 97–105
Argyros, I.K., On the convergence of a certain class of iterative procedures under relaxed conditions with applications 94 (1998) 13–21
Atakishiyev, N.M., see Atakishiyeva, M.K. 99 (1998) 27–35

Bai, Z.D., see Li, Z.-C. 94 (1998) 69–121
Bavinck, H., Differential and difference operators having orthogonal polynomials with two linear perturbations as eigenfunctions 92 (1998) 85–95
Berg, C., On some indeterminate moment problems for measures on a geometric progression 99 (1998) 67–75
Berriochoa, E. and A. Cachafeiro, Lebesgue Sobolev orthogonality on the unit circle 96 (1998) 27–34
Boneh, S., see Papanicolaou, V.G. 93 (1998) 95–105
Bourreau, E., see Beckermann, B. 98 (1998) 81–98
Brezinski, C., Vector sequence transformations: Methodology and applications to linear systems 98 (1998) 149–175
Brown, J.C., see Piana, M. 93 (1998) 75–88
Brunner, H., see Bandle, C. 97 (1998) 3–22
Budd, C.J., see Brunner, H. 97 (1998) 1–2
Cachafeiro, A., see Berriochoa, E. 96 (1998) 27–34
Cantero, M.J., see Alfaro, M. 99 (1998) 3–14
Celledoni, E., Discrete QMR and BCG in the numerical solution of linear systems of ODEs 91 (1998) 159–177
Chambat, M., see Bayada, G. 98 (1998) 191–212
Cheikh, Y.B., Decomposition of Laguerre polynomials with respect to the cyclic group of order n 99 (1998) 55–66
Chipot, M., see Brighi, B. 98 (1998) 273–287
Christiansen, S., Derivation and analytical investigation of three direct boundary integral equations for the fundamental biharmonic problem 91 (1998) 231–247
Collins, G.J., see Budd, C.J. 97 (1998) 51–80
Cui, B.T. and W.N. Li, A necessary and sufficient condition for oscillation of parabolic equations with several delays 95 (1998) 153–156
Danković, B., see Milovanović, G.V. 99 (1998) 299–310
De la Calle Ysern, B. and G.L. Lagomasino, Strong asymptotics of orthogonal polynomials with varying measures and Hermite–Padé approximants 99 (1998) 91–103
Dehesa, J.S., see Artés, P.L. 99 (1998) 15–26
Denk, G., see Schein, O. 100 (1998) 77–92
Dimov, T.T., see Dimov, I.T. 92 (1998) 15–35
Dunster, T.M., Asymptotics of the eigenvalues of the rotating harmonic oscillator 93 (1998) 45–73
Eastham, M.S.P., see Brown, B.M. 94 (1998) 181–197
Elfving, T., see Andersson, L.-E. 94 (1998) 153–180
Evans, D.J., see Bai, Z.-Z. 96 (1998) 127–138
Exton, H., Summation formulae involving the Laguerre polynomial 100 (1998) 225–227
Exton, H., New hypergeometric transformations (Short Communication) 92 (1998) 135–137
Ezquerro, J.A. and M.A. Hernández, Avoiding the computation of the second Fréchet-derivative in the convex acceleration of Newton’s method 96 (1998) 1–12
Farag, M.H., see Khater, A.H. 95 (1998) 29–43
Forsyth, P.A., see Zvan, R. 91 (1998) 199–218
Foster, L.V., The growth factor and efficiency of Gaussian elimination
with rook pivoting 98 (1998) 177
Foupouagnigni, M., M.N. Hounkonnou and A. Ronveaux,
Laguerre–Freud equations for the recurrence coefficients of
D_0 semi-classical orthogonal polynomials of class one 99 (1998) 143–154
Foupouagnigni, M., W. Koepf and A. Ronveaux, Fourth-order difference
equation for the associated classical discrete orthogonal polynomials
92 (1998) 103–108
Fu, J.-H. and D.F. Miller, Computational matrix representation mod-
ules for linear operators with explicit constructions for a class of lie
operators 98 (1998) 1–26
Galaktionov, V.A., see Budd, C.J. 97 (1998) 51–80
Gatica, G.N., see Barrenechea, G.R. 100 (1998) 145–160
Gawronski, W., see Bosbach, C. 99 (1998) 77–89
George, K., see Mohanty, R.K. 93 (1998) 1–12
Ghaleb, A.F., see Rawy, E.K. 100 (1998) 53–76
Gilewicz, J. and M. Pindor, Padé-type approximants and errors of
Padé approximants 99 (1998) 155–165
Giordano, C., A. Laforgia and J. Pečarić, Unified treatment of
Gautschi–Kershaw type inequalities for the gamma function
99 (1998) 167–175
Godoy, E., see Ronveaux, A. 99 (1998) 327–335
Godoy, E., A. Ronveaux, A. Zarzo and I. Area, Connection problems
for polynomial solutions of nonhomogeneous differential and
Godoy, E., A. Ronveaux, A. Zarzo and I. Area, On the limit relations
between classical continuous and discrete orthogonal polynomials
91 (1998) 97–105
Golub, G.H., see Andersson, L.-E. 94 (1998) 153–180
González-Concepción, C., see Pestano-Gabino, C. 94 (1998) 23–38
Grünbaum, F.A., Variations on a theme of Heine and Stieltjes: an
electrostatic interpretation of the zeros of certain polynomials
Guang, Y.-Y., see Bai, Z.-Z. 93 (1998) 13–33
Hamsapriye, see Chakrabarti, A. 92 (1998) 59–68
Helal, M.A., see Abou-Dina, M.S. 95 (1998) 65–81
Herceg, D.D., see Petković, M.S. 91 (1998) 123–135
Hernández, M.A., see Ezquerro, J.A. 96 (1998) 1–12
Hernández, M.B., F.C. Rodriguez, J.J. Guadalupe and G.L.
Lagomasino, Convergence rate of Padé-type approximants for
Stieltjes functions 99 (1998) 47–53
Hounkonnou, M.N., see Foupouagnigni, M. 99 (1998) 143–154
Hsiao, G.C., see Barrenechea, G.R. 100 (1998) 145–160
Iskandar, L., see Rawy, E.K. 100 (1998) 53–76
Jain, M.K., see Mohanty, R.K. 93 (1998) 1–12
John, V., A posteriori L^2-error estimates for the nonconforming P_1/P_0-finite element discretization of the Stokes equations 96 (1998) 99–116
Kajiwara, K., see Nakamura, Y. 96 (1998) 77–90
Kananthai, A., On the convolution equation related to the diamond kernel of Marcel Riesz 100 (1998) 33–39
Kaschiev, M., see Dimova, S. 97 (1998) 81–97
Kiesel, H., see Wimp, J. 99 (1998) 401–412
Koepf, W., see Foupouagnigni, M. 92 (1998) 103–108
Koleva, M., see Dimova, S. 97 (1998) 81–97
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Volume</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacey, A.A.</td>
<td>Diffusion models with blow-up</td>
<td>97</td>
<td>39–49</td>
</tr>
<tr>
<td>Laforgia, A.</td>
<td>see Giordano, C.</td>
<td>99</td>
<td>167–175</td>
</tr>
<tr>
<td>Lagomasino, G.L.</td>
<td>see Hernández, M.B.</td>
<td>99</td>
<td>47–53</td>
</tr>
<tr>
<td>Lagomasino, G.L.</td>
<td>see de la Calle Yserrn, B.</td>
<td>99</td>
<td>91–103</td>
</tr>
<tr>
<td>Le Roux, M.-N.</td>
<td>Numerical solution of fast diffusion or slow diffusion equations</td>
<td>97</td>
<td>121–136</td>
</tr>
<tr>
<td>Lee, J.K.</td>
<td>see Kim, Y.J.</td>
<td>99</td>
<td>239–253</td>
</tr>
<tr>
<td>Lee, S.</td>
<td>see Kim, P.</td>
<td>95</td>
<td>101–115</td>
</tr>
<tr>
<td>Leopold, E.</td>
<td>Location of the zeros of orthogonal polynomials with an automatic procedure I</td>
<td>92</td>
<td>1–14</td>
</tr>
<tr>
<td>Leopold, E.</td>
<td>The extremal zeros of a perturbed orthogonal polynomials system</td>
<td>98</td>
<td>99–120</td>
</tr>
<tr>
<td>Lether, F.G.</td>
<td>Shifted rectangular quadrature rule approximations to Dawson’s integral $F(x)$</td>
<td>92</td>
<td>97–102</td>
</tr>
<tr>
<td>Levin, A.L. and D.S. Lubinsky</td>
<td>Bounds for orthogonal polynomials for exponential weights</td>
<td>99</td>
<td>475–490</td>
</tr>
<tr>
<td>Lewandowski, Z. and J. Szynal</td>
<td>An upper bound for the Laguerre polynomials</td>
<td>99</td>
<td>529–533</td>
</tr>
<tr>
<td>Lewanowicz, S.</td>
<td>Recurrence relations for the connection coefficients of orthogonal polynomials of a discrete variable on the lattice $x(s) = q^{2s}$</td>
<td>99</td>
<td>275–286</td>
</tr>
<tr>
<td>Li, W.N.</td>
<td>see Cui, B.T.</td>
<td>95</td>
<td>153–156</td>
</tr>
<tr>
<td>Li, Z., D. Wang and J. Zou</td>
<td>Theoretical and numerical analysis on a thermo-elastic system with discontinuities</td>
<td>92</td>
<td>37–58</td>
</tr>
<tr>
<td>Li, Z.-C. and Z.D. Bai</td>
<td>Probabilistic analysis on the splitting-shooting method for image transformations</td>
<td>94</td>
<td>69–121</td>
</tr>
<tr>
<td>Liang, X.-Z. and C.-M. Lü</td>
<td>On the integral convergence of Kergin interpolation on the disk</td>
<td>95</td>
<td>45–63</td>
</tr>
<tr>
<td>Lindlbauer, M.</td>
<td>On the rate of convergence of the laws of Markov chains associated with orthogonal polynomials</td>
<td>99</td>
<td>287–297</td>
</tr>
<tr>
<td>Liu, C.-M.</td>
<td>see Liang, X.-Z.</td>
<td>95</td>
<td>45–63</td>
</tr>
<tr>
<td>Lubinsky, D.S.</td>
<td>see Levin, A.L.</td>
<td>99</td>
<td>475–490</td>
</tr>
<tr>
<td>Lui, S.H.</td>
<td>Kron’s method for symmetric eigenvalue problems</td>
<td>98</td>
<td>35–48</td>
</tr>
<tr>
<td>McCormack, D.K.R.</td>
<td>see Brown, B.M.</td>
<td>94</td>
<td>181–197</td>
</tr>
<tr>
<td>Maday, Y.</td>
<td>see Xu, C.</td>
<td>91</td>
<td>63–85</td>
</tr>
<tr>
<td>Markova, N.T.</td>
<td>see Bainov, D.D.</td>
<td>91</td>
<td>87–96</td>
</tr>
<tr>
<td>Martinez-Finkelshtein, A.</td>
<td>Asymptotic properties of Sobolev orthogonal polynomials</td>
<td>99</td>
<td>491–510</td>
</tr>
<tr>
<td>Martinez-Finkelshtein, A.</td>
<td>see Artés, P.L.</td>
<td>99</td>
<td>15–26</td>
</tr>
<tr>
<td>Mastroianni, G.</td>
<td>see Ehrich, S.</td>
<td>99</td>
<td>129–141</td>
</tr>
</tbody>
</table>
Matsuzawa, Y., Finite element approximation for some quasilinear elliptic problems

Mauthner, S., Step size control in the numerical solution of stochastic differential equations

McCartin, B.J., A model-trust region algorithm untilizing a quadratic interpolant

Medina, E., see Herrero, M.A.

Medina, R., Nonoscillatory solutions for the one-dimensional p-Laplacian

Medina, R., Stability and asymptotic behavior of perturbed difference systems

Melman, A., Spectral functions for real symmetric Toeplitz matrices

Meyers-Spasche, R., Difference schemes of optimum degree of implicitness for a family of simple ODEs with blow-up solutions

Miaojuan, P., see Yumin, C.

Miller, A.R., Remarks on a generalized beta function

Miller, A.R. and I.S. Moskowitz, On certain generalized incomplete gamma functions

Miller, D.F., see Fu, J.-H.

Miller, J. and V.S. Adamchik, Derivatives of the Hurwitz Zeta function for rational arguments

Milovanović, G.V., B. Danković and S.Lj. Rančić, Some Müntz orthogonal systems

Min, G., Lobatto-type quadrature formula in rational spaces

Mohanty, R.K., M.K. Jain and K. George, Fourth-order approximations at first time level, linear stability analysis and the numerical solution of multidimensional second-order nonlinear hyperbolic equations in polar coordinates

Monk, P., A posteriori error indicators for Maxwell’s Equations

Moral, L., see Alfaro, M.

Moskowitz, I.S., see Miller, A.R.

Nakamura, Y., K. Kajiwara and H. Shiotani, On an integrable discretization of the Rayleigh quotient gradient system and the power method with a shift

Nakao, M.T., N. Yamamoto and Y. Watanabe, A posteriori and constructive a priori error bounds for finite element solutions of the Stokes equations

Nikolov, G., see Hunter, D.B.

Njøstad, O., Nevanlinna matrices for the strong Stieltjes moment problem

Notaris, S.E., New interpolatory quadrature formulae with Chebyshev abscissae
Ohnaka, K., see Yamatani, K. 95 (1998) 139–151
Osada, N., Improving the order of convergence of iteration functions (Letter to the Editor) 98 (1998) 311–315
Osland, P., see Ogreid, O.M. 98 (1998) 245–271

Pecarić, J., see Giordano, C. 99 (1998) 167–175
Pérez, T.E., see Álvarez de Morales, M. 100 (1998) 111–120
Piñar, M.A., see Álvarez de Morales, M. 100 (1998) 111–120
Pindor, M., see Gilewicz, J. 99 (1998) 155–165
Ponnusamy, S., Hypergeometric transforms of functions with derivative in a half plane 96 (1998) 35–49
Poole, M.W., see Aitchison, J.M. 94 (1998) 55–67

Qi-Ding, Z., see Sun, Z.-Z. 98 (1998) 289–304

Rančić, S.Lj., see Milovanović, G.V. 99 (1998) 299–310
Reichel, L., see Calvetti, D. 92 (1998) 109–133
Rodríguez, F.C., see Hernández, M.B. 99 (1998) 47–53
Ronveaux, A., see Foupouagnigni, M. 92 (1998) 103–108
Ronveaux, A., see Foupouagnigni, M. 99 (1998) 143–154
Rozložník, M. and R. Weiss, On the stable implementation of the
generalized minimal error method 98 (1998) 49—62

Sánchez-Ruiz, J., see Artés, P.L.

Sadek, I.S., L. Jamiiiru and H.A. Al-Mohamad, Optimal boundary
control of one-dimensional multi-span vibrating systems 94 (1998) 39—54

Salanova, M.A., see Ezquerro, J.A.

Santos, C.H., B.P.B. Silva and J.Y. Yuan, Block SOR methods for
rank-deficient lest-squares problems 100 (1998) 1—9

Santos-León, J.C., Asymptotic expansions for trapezoidal type

Savvin, A.A., see Dorfmann, A.A.

Sayas, F.-J., A generalized Euler–Maclaurin formula on triangles
93 (1998) 89–93

Schein, O. and G. Denk, Numerical solution of stochastic differential-
algebraic equations with applications to transient noise simulation
of microelectronic circuits 100 (1998) 77–92

Schoutens, W., Levy-Sheffer and IID-Sheffer polynomials with
applications to stochastic integrals 99 (1998) 365–372

Shamardan, A.B., see Khater, A.H.

Shi, X., T. Wang and B. Yin, Splines on generalized quasi-cross-cut
partitions 96 (1998) 139–147

Shi, Y., see Dargahi-Noubary, G.R.

Shiotani, H., see Nakamura, Y.

Sifi, M., Generalized wavelet packet associated with Laguerre

Silva, B.P.B., see Santos, C.H.

Simeonov, P., see Ismail, M.E.H.

Simeonov, P.S., see Bainov, D.D.

Simos, T.E., An accurate finite difference method for the numerical
solution of the Schrödinger equation 91 (1998) 47–61

Sloan, D.M., see Brunner, H.

Sommeijer, B.P., see van der Houwen, P.J.

Su, Y., A. Bhaya and E. Kaszkurewicz, A general asynchronous block
iterative model with related convergence conditions 91 (1998) 261–273

Sun, Z.-Z. and Z. Qi-Ding, On Tsertsvadze's difference scheme for the
Kuramoto-Tsuzuki equation 98 (1998) 289–304

Szynal, J., see Lewandowski, Z.

Taşeli, H., see Zafer, A.

Totik, V., Orthogonal polynomials with respect to varying weights
99 (1998) 373–385

Trotta, R.L., see Alonso, A.

Tsitouras, Ch., High-order zero-dissipative Runge–Kutta–Nyström
methods (Letter to the Editor) 95 (1998) 157–161
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valli, A., see Alonso, A.</td>
<td>96 (1998) 51–76</td>
</tr>
<tr>
<td>Van Doorn, E.A., see Coolen-Schrijner, P.</td>
<td>99 (1998) 387–399</td>
</tr>
<tr>
<td>van der Houwen, P.J., B.P. Sommeijer,</td>
<td>The use of approximate factorization in stiff ODE solvers</td>
</tr>
<tr>
<td>Vasileva, D., see Dimova, S.</td>
<td>97 (1998) 81–97</td>
</tr>
<tr>
<td>Vázquez, C., see Bayada, G.</td>
<td>98 (1998) 191–212</td>
</tr>
<tr>
<td>Velázquez, J.J.L., see Herrero, M.A.</td>
<td>97 (1998) 99–119</td>
</tr>
<tr>
<td>Vermolen, F. and K. Vuik,</td>
<td>A numerical method to compute the dissolution of second phases in ternary alloys</td>
</tr>
<tr>
<td>Vetzal, K.R., see Zvan, R.</td>
<td>91 (1998) 199–218</td>
</tr>
<tr>
<td>Vuik, K., see Vermolen, F.</td>
<td>93 (1998) 123–143</td>
</tr>
<tr>
<td>Wang, D., see Li, Z.</td>
<td>92 (1998) 37–58</td>
</tr>
<tr>
<td>Wang, T., see Shi, X.</td>
<td>96 (1998) 139–147</td>
</tr>
<tr>
<td>Watanabe, Y., see Nakao, M.T.</td>
<td>91 (1998) 137–158</td>
</tr>
<tr>
<td>Wegenkittl, S., Are there hyperbolas in the scatter plots of inversive congruential pseudorandom numbers?</td>
<td>95 (1998) 117–125</td>
</tr>
<tr>
<td>Weiss, R., see Rozložník, M.</td>
<td>98 (1998) 49–62</td>
</tr>
<tr>
<td>Wu, Z., see Yumin, C.</td>
<td>98 (1998) 63–79</td>
</tr>
<tr>
<td>Xiang, K. and J. Zhang, Explicit two-step high-accuracy hybrid methods with minimal phase-lag for (y'' = f(x, y)) and their application to the one-dimensional Schrödinger equation</td>
<td>95 (1998) 1–11</td>
</tr>
<tr>
<td>Yamamoto, N., see Nakao, M.T.</td>
<td>91 (1998) 137–158</td>
</tr>
<tr>
<td>Yin, B., see Shi, X.</td>
<td>96 (1998) 139–147</td>
</tr>
<tr>
<td>Yuan, J.Y., see Santos, C.H.</td>
<td>100 (1998) 1–9</td>
</tr>
<tr>
<td>Yun, J.H., Block incomplete factorization preconditioners for a symmetric block-tridiagonal M-matrix</td>
<td>94 (1998) 133–152</td>
</tr>
<tr>
<td>Zafer, A. and H. Taşeli, Two-sided eigenvalue bounds for the spherically symmetric states of the Schrödinger equation</td>
<td>95 (1998) 83–100</td>
</tr>
</tbody>
</table>
Zarzo, A., see Ronveaux, A. 99 (1998) 327–335
Zhang, J., see Pu, D. 93 (1998) 107–122
Zhang, J., Multi-level minimal residual smoothing: a family of general purpose multigrid acceleration techniques 100 (1998) 41–51
Zhang, J., see Xiang, K. 95 (1998) 1–11
Zou, J., see Li, Z. 92 (1998) 37–58