Letter to the Editor

Comments on “The parallel version of the successive approximation method for quasilinear boundary-value problem” by Scheiber Ernö

Department of Mathematics, Vietnam National University, 90 Nguyen Trai, Dong Da, Hanoi, Vietnam

Received 29 July 1998

In this note we want to show that the parallel version of the successive approximation method (SAM) especially designed by Ernö for quasilinear boundary-value problems (BVPs) with large overall integration interval [1] may not converge.

Consider the following quasilinear two-point BVP:

\[\dot{x} = Q(t)x + f(t,x), \quad 0 > t > T, \] \tag{1}

\[Ax(0) + Bx(T) = c \] \tag{2}

with the same notations as in [1]. In what follows, we suppose that the function \(f(t,x) \) is Lipschitz continuous in \(x \) with the Lipschitz constant \(L \) in the domain \(D = \{(x,t): t \in [0,T]; |x| \leq r \} \) and the shooting matrix \(A + BH(T,0) \), where \(H(t,s) = X(t)X^{-1}(s) \) and \(X(t) \) is a fundamental matrix of linear homogeneous system \(\dot{x} = Q(t)x \), is nonsingular.

It is well known that if the length of integration interval \(T \) is sufficiently small, then problem (1) and (2) possesses a unique solution and the SAM can be implemented for finding the solution of (1) and (2).

If \(T \) is not small, Ernö proposed a parallel version of the SAM. The main idea of his method is to divide the overall integration interval into \(m \) parts with sufficiently small \(h = T/m \) and to apply the shooting method to an enlarged BVP with a small integration interval \([0,h]\). It has been proved [1] that the shooting matrix \(R + S\mathcal{H}(h,0) \) of the enlarged system is also nonsingular and its inverse can be effectively calculated. Moreover, his approach allows a complete distribution of the computation on the components of the enlarged system.

However, a closer examination of convergence theorem 3.1 [1] shows that if \(T \) is not small then the main requirements \(||[R + S\mathcal{H}(h,0)]^{-1}|| \ll \gamma \) and \(\rho Lwh < 1 \), where \(\rho \geq \max \{|H(t,s)|: 0 \leq t, s \leq T\} \), \(\sigma = \max \{|A|, |B|, 1\} \) and \(w = 1 + \gamma \rho \sigma \) may not hold. Indeed, let us consider a simple scalar problem (1) and (2) with \(n = 1 \); \(Q(t) \equiv q > 0 \); \(A = 1 \); \(B = -1 \); \(c = 0 \).

Fax: +84 4 7331520; e-mail: csdptht@hn.vnn.vn.

0377-0427/99/$ – see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII: S0377-0427(98)00227-1
Putting $Z := 1 - e^{\sigma T}; \quad \rho = e^{\sigma T}; \quad \sigma = 1$, we have (see [1])

$$[R + S \mathcal{H}(h, 0)]^{-1} = \begin{pmatrix} Z & Z e^{(m-1)hq} & \cdots & Z e^{hq} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}.$$

Thus, $\gamma \geq \|[R + S \mathcal{H}(h, 0)]^{-1}\|_{\infty} \geq |Z|(1 + e^{(m-1)hq} + \cdots + e^{hq}) > m|Z| = ((e^{\sigma T} - 1)T)/h$.

Now let $T \geq (Lq)^{-1/2}$, then

$$\rho Lwh = e^{\sigma T} Lh(1 + \gamma e^{\sigma T}) > LTe^{2\sigma T}(e^{\sigma T} - 1) > LqT^2 \geq 1.$$

Consequently, the conditions of Theorem 3.1 are not fulfilled. It is worth noting that there are a lot of examples, when $\|[R + S \mathcal{H}(h, 0)]^{-1}\|_{\infty} \to \infty (h \to 0)$ and the inequality $\rho Lwh < 1$ holds only if T is small enough.

Reference