Economic motives and professional norms:
the case of general medical practice

Tor Iversen*, Hilde Lurås

Health Economics Research Programme at the University of Oslo (HERO),
Center for Health Administration, The National Hospital, N-0027 Oslo, Norway

Received 10 June 1998; received in revised form 9 February 2000; accepted 23 February 2000

Abstract

Professional norms are supposed to have a central role in the allocation of resources when consumers have inferior information about the characteristics of products. We argue that economic motives are nevertheless important to resource allocation when professional opinions differ. The argument is illustrated with an example from medical care. We find that physicians who experience a shortage of patients have higher income, longer and more frequent consultations and more laboratory tests per listed person than their unconstrained colleagues. © 2000 Elsevier Science B.V. All rights reserved.

JEL classification: H42; I11; I18

Keywords: Economic motives; Professional norms; Capitation; General practice; Patient shortage; Service provision

1. Introduction

When consumers have little knowledge about characteristics of products, professional norms are often assumed to play a central role in the allocation of resources. For instance, Arrow (1963) argued that this is a major function of professional norms for medical doctors. An interesting question is whether personal economic motives are then absent. In this paper, we argue that economic motives are important to resource allocation when professional opinions differ. Our example is from medical care when it is not clear what constitutes the right treatment for a patient.

The focus is on demand creation among general practitioners (GPs). We shall examine whether GPs who experience a shortage of patients (rationing) provide more services to...
each of their patients than their unrationed colleagues. Our study employs data from the Norwegian capitation experiment initiated by the central government in the early 1990s. Due to the experiment, the payment system for GPs was also changed. In the previous system, most GPs were self-employed contract physicians while the rest were municipal employees on a fixed salary. In the new remuneration system, a GP’s income consists of a per capita component per listed person and a fee-per-item component. Compared with the remuneration system of the contract physician in the previous system, the municipal grant and some fees were replaced by the capitation component.

All GPs in four municipalities participated in the experiment, and all inhabitants in these municipalities were listed by a GP. We have ex ante information about the number of persons that each GP would like to have on his list at the start of the experiment. A GP’s preferred list size reveals information about a physician’s preferred practice style and his preferred workload. By comparing preferred list size ex ante and actual list size during the experimental period we can distinguish empirically between those GPs who experience a shortage of patients (rationing) and those who do not.

Our micro data on individual GPs’ preferred and actual number of patients improve on previous studies by introducing the possibility of patient constraints at the individual practice level. We find that GPs who experience a shortage of patients provide more services to their patients and use all kinds of fees more frequently than their unconstrained colleagues. An important policy implication of our study is then that GPs’ choice of service provision seems to depend on economic motives.

In the health economics literature, considerable attention is devoted to whether physicians, in order to generate income, induce demand for their own services. Many authors are critical as to whether empirical studies in fact have managed to distinguish effects of supplier-induced demand from effects of better access. Dranove and Wehner (1994) point out two factors that may cause the problem of identification: the first stage regression is not identified and border crossing of patients is not adequately addressed. The first factor stems from the fact that the number of physicians in an area may not be exogenous, but influenced by the volume of health services provided. Two-stage least squares estimation is therefore applied. The first stage identifies a physician supply equation, and ideally includes variables that are related to physician supply and unrelated to the demand for physician services. Dranove and Wehner (1994) question whether the variables used are able to identify the first stage regression. In our study, this problem is solved, since we have data describing the individual GP’s actual number of patients compared with his preferred number. Variation in GP density at the municipal level is taken into account by introducing dummy variables. Since patients are listed with a GP practising in the municipality where they are residents, border crossing of patients is not a problem in our analysis.

1 The system with capitation in general practice has long since been established in countries like Denmark, the Netherlands and the UK.
2 The fee-per-item component from the National Insurance Scheme and from patient charges is paid according to a fixed fee schedule. The fees are decided in centralised negotiations between the physicians’ union and the state.
3 Scott and Shiell (1997a,b) provide a review of the literature and recent empirical results.
In Section 2, we present a model that determines a physician’s optimal number of patients and intensity of service provision in the rationed and in the unrationed case. A detailed description of our data can be found in Section 3. Section 4 describes the estimation procedure and the results of the empirical analysis. Section 5 provides concluding remarks that include suggestions for further studies.

2. A GP’s optimal number of patients and intensity of service provision

In this section, we model the effect of economic constraints on a GP’s optimal practice profile in a mixed capitation and fee-per-item system. The practice profile is characterised by the number of patients the GP takes responsibility for, and the volume and composition of services he provides to his patients. We shall assume that the marginal product of health care on health is a declining function of the volume of services provided. This relation may, for instance, be explained by the fact that the health effect of an initial consultation with a GP is usually greater than the health effect of the following check-ups. Providing too many health services may even contribute negatively to a patient’s health on the margin. Too many diagnostic tests increase the probability of false positive results and excessive medication may have considerable adverse effects.

For a number of GP consultations it is not clear what constitutes ‘the right medical treatment’. The reason may be heterogeneity among patients with similar symptoms or diagnoses. But it may also be due to different opinions among physicians regarding the optimal volume of health services with respect to a patient’s health. For instance, views among physicians may differ with respect to how often a patient with diabetes or a patient with hypertension should be called for check-ups. Views may also differ on whether a GP who prescribes antibiotics to a patient should call in the patient for a follow-up consultation next week, or ask the patient to contact him if he feels worse. The intensity of service provision will on average be higher in the first case than in the second. It is also well documented that referral rates of GPs vary more than can be explained by the composition of patients. For our purpose, an interesting consequence of the lack of medical standards is that several practice profiles are all regarded as equally satisfactory from a professional point of view.

Fig. 1 describes the range of professional opinions about the relationship between a health service, \(s_i \), and its marginal health effect, \(h(s_i) \). The downward sloping line to the left expresses the most pessimistic view, while the downward sloping line to the right expresses the most optimistic view about the marginal effect of health services. The figure describes an interval, \([a_i, a_i+\beta_i] \), where the marginal effect of health services is not documented to be different from zero. Medical practice variation and the lack of medical standards are arguments for the existence of this interval. Other things equal, professional consensus about treatment profiles contributes to narrowing the interval.

5 A thoughtful discussion of the various aspects of uncertainty in knowledge about the efficacy of medical interventions is given by Phelps (1992).

6 For an introduction to the literature on medical practice variation, see Andersen and Mooney (1990).

7 In the health economics literature this interval is often referred to as ‘flat of the curve medicine’, see for instance Enthoven (1980).
We denote the number of health services in excess of α_i as k_i. To simplify the analysis, we shall assume only two health services. Furthermore, α_i is assumed to depend on k_j, ($i \neq j$), such that $\alpha_i = \alpha_i(k_j)$. For instance, if service no. 1 is consultations in the physician’s office and service no. 2 is consultations by telephone, it seems reasonable that $\partial \alpha_1(k_2)/\partial k_2 < 0$. On the other hand, if service no. 1 is medication requiring monitoring, we may have $\partial \alpha_1(k_2)/\partial k_2 > 0$.

The value of α_i and β_i may vary between groups of patients. The number of episodes of illness during a certain period, as well as the marginal benefit from health services during an episode of illness, may differ. For instance, elderly persons with chronic diseases may need more health services to stay healthy than young people. We introduce a parameter, θ, to account for variation in need according to patient group. θ is considered to be exogenous to the individual GP. 8 We then have $\alpha_i = \alpha_i(\theta, k_j)$ and $\beta_i = \beta_i(\theta)$, where the partial derivatives with respect to θ are positive. We shall assume that the distribution of θ describes the physician’s population of patients. θ has the probability density function $f(\theta)$, where $\theta \in (0, \infty)$. $F(\theta)$ is the cumulative distribution function. We shall assume that the physician can influence the number of patients (n) he takes care off. The distribution of patients according to groups is, however, assumed to be exogenous to the physician.

We assume that a physician decides the quantity of health services provided to each of his patients. 9 We further assume that a physician has lexicographic preferences concerning his patients’ health and his own income and leisure. This assumption implies that a patient’s health is never balanced against the GP’s income or leisure. Health services are then provided until the marginal health effect is equal to zero. This assumption simplifies the formal reasoning considerably and it is also in accordance with the medical profession’s own

8 Since we have a one-period model, it is reasonable to assume that θ is exogenous. In a two-period model θ in this period may, however, depend on the volume of health services provided in the previous period.

9 The number of patient-initiated contacts is assumed to be included in α_i.
assertion. A relaxation of this assumption would imply that the effect of economic incentives is strengthened.

We assume a quasilinear objective function formulated in monetary terms as \(V = c + v(l) \), where \(c \) is consumption (all income is consumed) and \(l \) is leisure. \(v(l) \) is assumed to be strictly concave with \(v'(l) > 0 \). The physician’s decision problem may now formally be expressed as

\[
\max_{k_1, k_2, n} c + v(l) = w + qn + n \int_0^\infty \left[p_1(\alpha_1(\theta, k_2) + k_1) + p_2(\alpha_2(\theta, k_1) + k_2) \right] f(\theta) d\theta + v[T - n \int_0^\infty \left[t_1(\alpha_1(\theta, k_2) + k_1) + t_2(\alpha_2(\theta, k_1) + k_2) \right] f(\theta) d\theta]
\]

such that

(i) \(0 \leq k_1 \leq \beta_1(\theta) \)
(ii) \(0 \leq k_2 \leq \beta_2(\theta) \)
(iii) \(0 < n \leq \tilde{n} \)

where \(w \) is a fixed salary or practice allowance, \(q \) is a capitation payment per person on the physician’s list of patients, \(p_i \) is the fee per item of health service (or equivalently, a fee for service) no. \(i \) \((i=1, 2)\), \(t_i \) is the time input of providing health service no. \(i \), \(T \) is the total time endowment and \(\tilde{n} \) is a constraint on the number of patients. All of these variables are assumed to be exogenous to the physician. (i) and (ii) say that the number of services provided to a patient must be within the interval where the marginal effect of services on health is not documented to be different from zero. (iii) says that the number of patients is positive, but physicians may experience a shortage of patients. We shall only consider cases where \(n \) is positive.

The maximisation problem is analysed by means of concave programming. Because the empirical part of the paper employs data from a mixed capitation and fee-per-item system, we shall concentrate on the model’s predictions under this system. When \(q > 0 \), \(p_1 > 0 \), \(p_2 > 0 \), \(w = 0 \) and ‘\(a \)’ is the net fee per time unit of service no. 2 relative to service no. 1 we have the following results.

In a combined capitation and fee-per-item system:

- The minimum volume of both services is provided when the income per time unit of providing service no. 1 is equal to the income per time unit of providing service no. 2 (\(a = 1 \)) and in an interval around \(a = 1 \).
- Outside this interval: when the income per time unit of providing service no. 1 is larger (smaller) than the income per time unit of providing service no. 2, the maximum (minimum) volume of service no. 1 and the minimum (maximum) volume of service no. 2 are provided.

10 \(p_i \) may be interpreted as a net fee, i.e. the gross fee minus the physician’s costs for employed personnel and other inputs except own time.
11 Assuming \(t_i \) to be exogenous is not quite realistic, but it simplifies the analysis and plays no substantial role for our conclusions.
12 Details can be found in Appendix A.
13 Results for other payment systems can be found in Appendix B, available from the authors.
When a shortage of patients occurs, even the less profitable service may be provided in excess of the minimum volume. The intuition behind the result is: in a pure fee-per-item system the relative fee per time unit (a) determines the optimal number of each service. If $a \neq 1$, the least paid service will be provided at the minimum volume ($k_i = 0$), while the best paid service will be provided at the maximum volume ($k_j = \beta_j$). On the other hand, in a pure capitation system, where the list of patients is the only income-generating component for the GP, the volume of both services is chosen equal to the lower constraint. In a combined payment system, the size of the capitation component relative to the fee-for-service component determines the optimal service provision. Even if $a \neq 1$, extra provision of the best paid service has an opportunity cost of reduced income from capitation. If this opportunity cost is 'large enough' relative to the fee-for-service component, the provision of both services is kept to the minimum ($k_1 = k_2 = 0$). With a shortage of patients, the opportunity cost declines and hence, the service provision is likely to increase. The solution is shown in Fig. 2.

In Appendix A, it is shown that k_1, k_2 and n are homogenous of degree zero in p_1, p_2 and q. In Fig. 2, the curve that illustrates the margin between the $k_1 = k_2 = 0$ and $k_1 = \beta_1$, $k_2 = 0$ is downward sloping because a decline in ‘a’ makes it more profitable to increase the provision of service no. 1. Hence, an increase in q is necessary to restore the indifference. By similar reasoning, it follows that the curve showing the margin between $k_1 = k_2 = 0$ and $k_1 = 0$, $k_2 = \beta_2$ is upward sloping.

Fig. 2 also illustrates that the introduction of a capitation component implies that $k_1 = k_2 = 0$ even when $a \neq 1$ is in the interval α, \bar{a}. The result illustrates a point emphasised by Newhouse (1992, 1996): because of the practical difficulties of fine-tuning a single payment component, a mixture of payment components is more robust in order to achieve health policy objectives.

Let us finally consider the feasible solutions when there is a shortage of patients, i.e. $n = \hat{n}$. Let μ be the Lagrange parameter related to the third constraint in (1), expressing the increase in utility of a marginal loosening of the constraint, i.e. a marginal increase in the number of patients. Hence, $\mu > 0$ when $n = \hat{n}$. The magnitude of μ relative to the per capita component q plays an important role in the constrained case. If $\mu < q$, the increase in utility is less.
than the capitation fee. This means that the marginal utility from increasing the volume of services with the optimal composition of services is negative: the marginal value of leisure is larger than the income from marginal service provision. Then, the number of services per patient in the constrained case is equal to the number of services in the unconstrained case. If \(\mu > q \), the income from marginal service provision with an optimal composition of services is larger than the marginal value of leisure. The number of services per patient in the constrained case is then larger than the number of services in the unconstrained case. The most profitable service is certainly offered at the maximum level, and if the shortage of patients hurts enough, even the less profitable service may be offered in excess of the minimum volume. We are not able to distinguish empirically between GPs according to the relation between \(\mu \) and \(q \). However, if \(\mu > q \) for at least one GP in our sample, we will find an effect of rationing on the volume of services provided. In Appendix B, we show that if \(\mu > q \), the maximum number of both services is provided even with \(a = 1 \). The interpretation of \(\mu = q \) should now be obvious.

From the model’s results, the following testable hypotheses follow directly.

- A GP’s income from fees per listed person is expected to be higher in the constrained case (a shortage of patients) than in the unconstrained case, because more services per person are expected to be provided.
- If the constraint hurts enough, even the less profitable services are expected to be provided in excess of the minimum volume in the constrained case.

We shall also take into account an effect of patient composition that follows directly from one of the model’s assumptions.

- A GP’s income per listed person increases when the composition of the list shifts towards a population with a greater need for health services (a negative shift in \(F(\theta) \)).

3. Description of the data

Data from the Norwegian capitation experiment are applied. Annual data for each physician’s practice income were collected in 1994 and 1995. The total fee-for-service component consists of the payment from the National Insurance Scheme and from patient charges. This aggregate is used as an indicator of the total volume of services provided in a GP’s practice during 1 year (INPERCAP). Data describing the composition of the fee-for-service component were collected in two representative periods of 14 days, one in March 1994 and one in March 1995.

The number of ordinary consultations (CONSULTS) and the number of laboratory fees (# LABS) per listed person are used as indicators of the best-paid services. The fee schedule also contains a fee that depends on the duration of the consultation. If the consultation lasts more than 20 min, the GP receives an additional NOK 56 per started 15 min. The ordinary fee per consultation with a duration of less than 20 min is NOK 78. Hence, the fee depending on the consultation duration is likely to be less profitable than the ordinary consultation fee. The number of consultations per listed person when this fee is used (DURATION) is an indicator of the frequency of providing the less profitable services.

Only physicians with more than 500 persons on the list and income data of sufficient quality were included. Four physicians were excluded from the data set because they were
outliers. Our income data then consist of 218 observations, while the service provision data include 183 observations.

According to Fig. 2, both of the services are provided at a minimum level if the capitation fee is high compared with the fee for service. In our data the capitation fee is NOK 236. Hence, the capitation fee is about four times the fee for long consultations. We suspect this difference to be large enough to encourage \(k_1 = k_2 = 0 \) in the unconstrained optimum. An example illustrates our prediction: assume that an average ordinary consultation lasts 15 min and an average long consultation lasts 30 min. An additional listed patient has on average two consultations per year. One of these consultations is assumed to be a consultation of long duration. The income per hour of providing more consultations to the present list of patients is then NOK\(\left(\frac{78 \times 60}{15} \right) \) = NOK 312, while the expected income per hour of adding one patient to the list is NOK\(\left(\frac{236 + 78 + 78 + 56}{60} \times 60 \right) \) = NOK 597. Hence, it is more profitable to provide few services to a long list of patients than to provide many services to a short list of patients. Hence, we expect that \(k_1 = k_2 = 0 \) in the unconstrained optimum and, accordingly, that the whole range of services is expected to increase when a shortage of patients occurs.

One important conclusion from our theoretical model is that physicians who experience a shortage of patients have a more service intensive practice style than their unconstrained colleagues. Before the experiment started, all the participating GPs were asked to specify the number of persons they would like to have on their individual lists (PRELISTSIZE). It is important to note that a GP both takes account of his own characteristics, such as family situation and medical experience, and his own practice style when he expresses his preferred list size. For instance, one GP may wish to work 10 h each day, another prefers a part-time job, one prefers short consultations and yet another prefers to use considerable time on a patient during the consultation. It follows that the preferred number of persons on the list is likely to vary substantially between GPs. For each GP we compare preferred list size and actual list size and obtain an indicator of individual patient constraints. Hence, the absolute size of the lists and the reason why the size varies between GPs are not an issue in this study.

Two dummy variables indicate whether GPs are rationed. The dummy variable RATION_A is equal to one for those physicians who had a smaller list than they wanted in period one and experienced a net increase in the number of patients from period one to period two. The second dummy variable, RATION_B, is equal to one for those physicians who had a smaller list than they wanted in period one and experienced a constant or a declining number of patients from period one to period two. Our data then consist of three groups of GPs according to rationing status: unrationed, lightly rationed (RATION_A) and strongly rationed (RATION_B) GPs. We predict that constrained GPs consider an increased number of patients in period two as a signal of a less severe constraint. Accordingly, it is optimal for them to have a less aggressive practice style than their colleagues experiencing a shortage of patients in the first period and a constant or a declining list of patients in the second period. Hence, the effect of both light and strong rationing is expected to be positive, and the effect of the former is expected to be weaker than the effect of the latter.

\[^{14}\text{Their registered income per listed patient differed substantially between 1994 and 1995. We therefore suspect that an extraordinary time lag between service provision and income registration occurred in one of the years.}\]
The distribution of patients according to age and gender is expected to influence the volume of services provided. It is well known from various studies that females have more frequent consultations than men and that the elderly have more frequent consultations than younger (disregarding the infant age) people (Elstad, 1991). As an indicator of the patient load we used the female proportion of patients (PROPFEM) and the proportion of patients aged 70 and older (PROPOLD). These data were collected annually. Female physicians seem to have a practice style that differs from their male colleagues (Langwell, 1982). Kristiansen and Mooney (1993) found that on average female GPs had longer consultations than male GPs. In the analysis we take account of the physician’s gender (FEMALE). All the GPs in our set of data are self-employed. Prior to the capitation experiment, however, some of the physicians were employed by the municipality on a fixed salary contract. It follows that they were unfamiliar with the fee schedule compared with their privately practising colleagues. In the transition period, the income from fees may therefore underestimate their volume of service provision. We therefore introduced a dummy variable to account for the physician’s employment status before the experiment (SALARIED).

From Table 1 we see that the mean annual income from fees and patient charges per person listed for the whole sample of GPs was NOK 237. On average, 51 percent of the persons on the individual lists were women and nearly 10 percent were aged 70 and older. Thirty-seven percent of the physicians included were salaried community physicians prior to the experiment and 26 percent of the physicians were female. During the 14 days of registration the GPs on average provided 0.07 consultations, 0.07 laboratory tests and used the duration-dependent fee 0.02 times per listed person. Calculated on an annual basis (multiplied by 26), our figures correspond to 1.9 consultations per person per year.

Almost 40 percent of the GPs were lightly rationed and 26 percent experienced strong rationing. Hence, almost 66 percent of the physicians experienced a smaller list in period 1 than they preferred when the experiment was initiated. As seen from Table 1, the strongly rationed group annually earns NOK 50 more per listed person from the fee-for-service component than their unrationed colleagues. On average, both categories of rationed GPs provide more consultations, use the duration-dependent fee to a greater extent and provide more laboratory tests per listed person than their unconstrained colleagues.

4. Estimation and results

Because there are two periods of observations of each GP, and each GP belongs to a specific municipality, our data have a hierarchical structure. Demographic and cultural characteristics and the organisation of primary care at the municipal level are likely to influence the practice styles and hence, our observations of GPs at the municipal level. There is also reason to believe that the practice style has individual characteristics, making an observation in one period dependent on the observation in the other period for identical GPs. The implication of a hierarchical structure of the data is that the assumption of independent

15 In the annual income data there are 218 observations (level 1) of 109 GPs (level 2) from four municipalities (level 3). In the disaggregated data on service provision there are 183 observations (level 1) of 110 GPs (level 2) from four municipalities (level 3).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Unrationed (sufficient patients) (76 GPs)</th>
<th>Ration_A (desired-actual, and increasing) (86 GPs)</th>
<th>Ration_B (desired-actual, and constant or declining) (56 GPs)</th>
<th>All GPs (218 GPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpercap</td>
<td>Annual income from fees and patient charges per listed person in NOK</td>
<td>NOK 211 (NOK 63)</td>
<td>NOK 245 (NOK 69)</td>
<td>NOK 262 (NOK 83)</td>
<td>NOK 237 (NOK 73)</td>
</tr>
<tr>
<td>Duration</td>
<td>The number of consultations per listed person where a GP uses the duration dependent fee</td>
<td>0.016 (0.015)</td>
<td>0.027 (0.021)</td>
<td>0.029 (0.023)</td>
<td>0.024 (0.02)</td>
</tr>
<tr>
<td># Labs</td>
<td>The number of laboratory tests per listed person</td>
<td>0.06 (0.04)</td>
<td>0.062 (0.051)</td>
<td>0.09 (0.063)</td>
<td>0.069 (0.053)</td>
</tr>
<tr>
<td>Consults</td>
<td>The number of consultations per enlisted person</td>
<td>0.062 (0.033)</td>
<td>0.07 (0.041)</td>
<td>0.08 (0.041)</td>
<td>0.07 (0.039)</td>
</tr>
<tr>
<td>Prelistsize</td>
<td>A GP’s statement of preferred list size before the capitation experiment started</td>
<td>1698 (461)</td>
<td>1931 (409)</td>
<td>1961 (400)</td>
<td>1858 (440)</td>
</tr>
<tr>
<td>List size</td>
<td>The actual number of persons on a GP’s individual list</td>
<td>1869 (427)</td>
<td>1546 (365)</td>
<td>1757 (435)</td>
<td>1713 (428)</td>
</tr>
<tr>
<td>Propold</td>
<td>The proportion of persons aged 70 and older on the list</td>
<td>0.082 (0.059)</td>
<td>0.094 (0.045)</td>
<td>0.119 (0.071)</td>
<td>0.096 (0.059)</td>
</tr>
<tr>
<td>Propfemale</td>
<td>The proportion of females on the list</td>
<td>0.535 (0.109)</td>
<td>0.471 (0.11)</td>
<td>0.52 (0.091)</td>
<td>0.506 (0.108)</td>
</tr>
<tr>
<td>Female</td>
<td>A dummy variable equal to one if the physician is a female</td>
<td>0.368</td>
<td>0.14</td>
<td>0.286</td>
<td>0.257</td>
</tr>
<tr>
<td>Salaried</td>
<td>A dummy variable equal to one if the physician was a salaried community physician prior to the experiment</td>
<td>0.395</td>
<td>0.279</td>
<td>0.464</td>
<td>0.367</td>
</tr>
</tbody>
</table>

For these variables we have observations of 183 GPs during two periods of 14 days.
error terms in OLS is not valid. We make use of an estimation procedure that accounts for the multilevel structure and the possible clustering of data (Goldstein, 1995). This approach corresponds to the one reviewed by Rice and Jones (1997) and used by Scott and Shiell (1997a,b). We assume

\[y_{ijk} = a + (b + w_{jk})x_{ijk} + v_jk + u_{ijk} \]

where \(y_{ijk} \) is the dependent variable with a subscript indicating observation no. \(i \) of GP no. \(j \) in municipality no. \(k \), and \(x_{ijk} \) is the independent variable with a similar subscript. \(u_{ijk} \) is the stochastic error term at level 1 (observation) and \(v_jk \) is the error term at level 2 (GP). \(w_{jk} \) is the random coefficient of the slope associated with the explanatory variable \(x_{ijk} \). \(^{16}\)

Since level 3 in our data has only four possible values, we choose to include the municipalities as fixed effects \(^{17}\) (we therefore from now on suppress the subscript \(k \)). This formulation implies that the ‘constant term’ is considered to have a random element at each of the two levels. Since our data set consists of two observations of each unit, the similarity with panel data analysis is obvious.

We make the following assumptions regarding the distribution of the stochastic error terms of each of the two levels. \(^{18}\)

\[E(u_{ij}) = 0, \quad \text{var}(u_{ij}) = \sigma_u^2, \quad \text{covar}(u_{ij}, u_{il}) = 0 \quad \text{for} \quad i \neq k, \quad j \neq l \]
\[E(v_j) = 0, \quad \text{var}(v_j) = \sigma_v^2, \quad \text{covar}(u_{ij}, v_j) = 0 \]
\[E(w_j) = 0, \quad \text{var}(w_j) = \sigma_w^2, \quad \text{covar}(u_{ij}, w_j) = 0 \quad \text{and} \quad \text{covar}(v_j, w_j) = \sigma_{vw} \]

The total variance is then

\[\text{var}(y_{ij} | a, b, x_{ij}) = \text{var}(v_j + w_jx_{ij} + u_{ij}) = \sigma_v^2 + 2\sigma_vw x_{ij} + \sigma_w^2 x_{ij}^2 + \sigma^2 \]

and the covariance between two observations of the same physician is

\[\text{cov}(v_j + u_{1j}, v_j + u_{2j}) = \text{cov}(v_j, v_j) = \sigma_v^2 \]

since level 1 residuals are assumed to be independent.

When estimating the model we choose the random structure that maximises the likelihood of the model. The estimation procedure applied is the iterative GLS as modelled in the statistical software MLn. We first estimated the effect of rationing on the total income per listed person. The results of the estimation are shown in Table 2.

We observe that the estimated variance at level two is considerable, indicating a correlation between a GP’s practice style in the two periods. In the language of Fig. 1 in Section

\(^{16}\) In the analysis of the composition of the GP’s income (Table 3) we did not include a random coefficient: \(w_{jk} = 0 \).

\(^{17}\) In the first step of the regression we estimated the effect on the dependent variable of the municipalities. We corrected the dependent variable for this effect, and in the second step of the regression we used this corrected dependent variable.

\(^{18}\) Since there are two consecutive observations of each GP, one would suspect autocorrelation, i.e. \(\text{covar}(u_{1j}, u_{2j}) \neq 0 \). We have run a regression with \(\bar{u}_{1j} \) as an independent variable and \(\bar{u}_{2j} \) as a dependent variable without finding the estimated regression coefficient significantly different from zero. Hence, we cannot reject the null hypothesis.
Table 2
The estimated effect of a shortage of patients on income per listed person (INPERCAP) (standard deviations in parenthesis)

<table>
<thead>
<tr>
<th></th>
<th>Inpercap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td>−46.7 (40.1)</td>
</tr>
<tr>
<td>PROPOST</td>
<td>116.3 (110)</td>
</tr>
<tr>
<td>PROPFEM</td>
<td>41.6 (75.9)</td>
</tr>
<tr>
<td>FEMALE</td>
<td>−10.6 (20.3)</td>
</tr>
<tr>
<td>SALARIED</td>
<td>−2.5 (14.9)</td>
</tr>
<tr>
<td>RATION_A</td>
<td>21 (12.9)</td>
</tr>
<tr>
<td>RATION_B</td>
<td>40.8* (15)</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td></td>
</tr>
<tr>
<td>Level 2 (GP)</td>
<td></td>
</tr>
<tr>
<td>σ_i^2</td>
<td>1848 (477)</td>
</tr>
<tr>
<td>$\sigma (v, \text{salaried})$</td>
<td>891 (553)</td>
</tr>
<tr>
<td>Level 1 (observation)</td>
<td></td>
</tr>
<tr>
<td>σ^2</td>
<td>1734 (235)</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>−2389</td>
</tr>
<tr>
<td>Number of observations</td>
<td>218</td>
</tr>
</tbody>
</table>

*This indicates that the estimated parameter is significantly different from zero at the 5 percent level with a two-tailed test.

2, the implication of the large unexplained variance of practice style is that the interval $(\alpha_i, \alpha_i+\beta_i)$ is large. We have assumed that the error term at level two is correlated with the variable SALARIED because the log-likelihood with this variance–covariance structure was significantly higher than the log-likelihood when a simple random structure was applied.

The results indicate a positive effect of rationing for both groups of rationed GPs. The effect of strong rationing is significant. The results imply that a GP who experiences a light shortage of patients is expected to have 9 percent higher income from fees per patient than his unrationed colleagues. A GP who experiences a severe shortage of patients is expected to have 17 percent higher income per patient than the group of unrationed physicians. Hence, more severe rationing means higher income per listed person than less severe rationing. If we compare these results with the average list size for the three groups of GPs, we will note that although the group of strongly rationed GPs had on average 211 more persons on their list than the lightly rationed group, they earned more per listed person per year. This clearly illustrates the effect of physicians’ preferences for income relative to leisure on their practice style.

GPs with a service-intensive practice style may attract patients with a considerable need for health services. Hence, persons with this need may choose to be listed with GPs who have a high income from the fee-for-service component. We then have a simultaneous equation model where the variables that indicate need (PROPOST, PROPFEM) are correlated with the error term. Our estimation procedure will then produce inconsistent estimators. We applied the Hausman specification error test (Hausman, 1976) to determine whether a simultaneity problem is present. The null hypothesis that there is no simultaneity was not rejected.
Table 3
The estimated effect of rationing on consultations per listed person (CONSULT), on consultations that have a long duration (DURATION) and the number of laboratory fees used (# LABS) per listed person (standard deviations in parenthesis)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Consult</th>
<th># Labs</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTANT</td>
<td>−0.045* (0.021)</td>
<td>−0.067* (0.027)</td>
<td>0.006 (0.011)</td>
</tr>
<tr>
<td>PROPOLD</td>
<td>−0.015 (0.058)</td>
<td>0.037 (0.075)</td>
<td>−0.011 (0.032)</td>
</tr>
<tr>
<td>PROPFEM</td>
<td>0.076* (0.038)</td>
<td>0.128* (0.05)</td>
<td>−0.023 (0.021)</td>
</tr>
<tr>
<td>FEMALE</td>
<td>−0.0004 (0.01)</td>
<td>−0.008 (0.013)</td>
<td>0.007 (0.006)</td>
</tr>
<tr>
<td>SALARIED</td>
<td>0.001 (0.007)</td>
<td>−0.007 (0.009)</td>
<td>0.002 (0.004)</td>
</tr>
<tr>
<td>RATION_A</td>
<td>0.008 (0.007)</td>
<td>−0.005 (0.009)</td>
<td>0.006 (0.004)</td>
</tr>
<tr>
<td>RATION_B</td>
<td>0.018* (0.008)</td>
<td>0.021* (0.01)</td>
<td>0.008* (0.004)</td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ² (GP)</td>
<td>0.00014</td>
<td>0.00026</td>
<td>0.00013</td>
</tr>
<tr>
<td>σ² (observed)</td>
<td>0.00114</td>
<td>0.00188</td>
<td>0.00021</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>−701.263</td>
<td>−607.038</td>
<td>−955.554</td>
</tr>
<tr>
<td>Number of observations</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

* This indicates that the estimated parameter is significantly different from zero at the 5 percent level with a two-tailed test.

Our main conclusion so far is that GPs experiencing constraints regarding the number of patients provided more services to each patient than unconstrained GPs. One might claim that this result occurs because the unconstrained GPs experience too many patients on their list and hence they provide fewer services to their patients than their optimal level. In supplementary analyses we included dummies to take account of the practice style for GPs who had more patients than they preferred on their list. We still found a positive significant effect of strong rationing on GPs’ income. This effect is larger in absolute value than the negative and not significant effect of having more patients than the preferred number.

An interesting question is now whether we can trace this higher income from fees per listed person to any specific component of the fee schedule.

The effects on the number of consultations per listed person are shown in the first column of Table 3. Again, both of the rationing dummies are positive and we find that more severe rationing implies an increase in the number of consultations per person. The effect of more severe rationing is significant. We may then conclude that the number of consultations per person is part of the explanation behind the result of higher total income per listed person for GPs experiencing a shortage of patients.

In the second column we have examined the effect on the use of fees related to laboratory tests. Again, a significantly positive effect of rationing was found in the strongly rationed group. This group of physicians will on average provide 29 percent more laboratory tests per listed person than the group of unconstrained GPs. We conclude that more frequent use of laboratory fees is another reason why rationed GPs had higher total income per listed person.

19 Table 1 shows that the actual list of an unrationed GP on average is longer than his preferred length.
We use the number of duration-dependent fees per listed person as an indicator of the frequency of providing a less profitable service. The result of this analysis is shown in the third column of Table 3. The effect of rationing has the expected sign: on average a constrained GP uses the duration-dependent fee 25 and 33 percent, respectively, more per person than an unconstrained GP.

5. Concluding remarks

In the theoretical section of this paper, we studied the effect of a shortage of patients on a GP’s practice profile in a mixed capitation and fee-for-service payment system. A GP’s preferred list size reveals information about his preferred practice style and preferred workload. When a GP’s actual list size deviates from the preferred one, we expect him to have a practice style that deviates from his unconstrained optimal choice. We predicted that the fee-for-service component in the payment system motivates physicians who experience a shortage of patients to have a more service-intensive practice style than their unconstrained colleagues. We also predicted that a GP experiencing a shortage of patients even provides the least profitable services in excess of the minimum volume.

Data from the Norwegian capitation experiment were used to test the hypothesis. We applied an estimation procedure that took account of the hierarchical structure of the data. The results show that constrained physicians have higher incomes from fees per listed person than unconstrained GPs. In addition, the use of the various fees is in accordance with the predictions from the theoretical model. GPs experiencing constraints on the number of patients provided the best-paid services — ordinary consultations and laboratory tests — more often than unconstrained GPs. They also provided the less profitable service — the long consultation — more often than the minimum volume.

Our modelling of physician behaviour may be interpreted as a special case of monopolistic competition as analysed in the classic work of Chamberlin (1933). Under monopolistic competition each firm has individual characteristics that result in a demand curve for each firm’s products. The individual demand curves are less steep than the market demand curve, but not horizontal, as in the perfect competition case. Each firm is able to shift the individual demand curve by means of advertising and other types of activities that add to its selling costs. In our application, the demand for enrolment on a GP’s list is a function of the GP’s individual characteristics. This demand may deviate from the GP’s supply of list openings (preferred list size) determined by the condition that income per unit of time from an additional patient equals the marginal cost in terms of lost leisure. If the demand is less than the supply, the GP is rationed. Since the public insurer sets all prices, price competition is ruled out. Individual characteristics of GPs are considered exogenous. The demand side therefore determines the actual number of patients on each GP’s list. The rationed GP may influence the average income generated by each patient by adjusting the number of services provided. This adjustment is costly since there is a positive shift in the marginal cost curve because each patient now requires more of the GP’s time.

One may claim that the provision of extra services by a rationed GP is not an expression of his personal income motive, but simply an expression of altruism towards his patients. However, the GP’s unconstrained choice, expressed by the preferred list size, is a longer
list of patients and fewer services to each of the patients. That each patient receives less care in the GP’s unconstrained optimum than in the constrained optimum contradicts the notion that altruism is an important motive behind the provision of extra services.

We assumed that GPs never balance a patient’s health against own income. From a normative point of view, the model then seems to imply that a pure capitation system is socially optimal, since only the necessary volume of services per patient is then provided. One may, however, claim that a pure capitation system leads to underprovision, since GPs in fact balance a patient’s health against own income. Our study has no ambition of determining whether this is true. Our aim is limited to studying whether a GP’s practice profile is influenced by economic motives. A positive answer to this question is a necessary condition for the workings of economic incentives. Finding a payment system that encourages GPs to deliver the socially optimal volume of services requires additional information on GPs’, patients’ and insurers’ objective functions.

An implication of our study of relevance to health policy is that GPs’ choice of service provision seems to depend on economic motives. This result is probably not surprising to economists, but still controversial among health care workers and politicians. For instance, the entire focus in Norway seems to be on the shortage of GPs, while our study emphasises that organisation and payment system seem to influence perceptions of GP shortage. A shortage of GPs in one system may well be transformed into a shortage of patients in another system, which in turn may influence the actual service provision to patients. For instance, a practice allowance component is paid out independent of the number of persons a GP takes care of, while a capitation component will encourage GPs to take care of a large number of patients. When a capitation component replaces a practice allowance component, this may imply a switch from a situation with a shortage of GPs to a situation with a shortage of patients. When the payment system also consists of a fee-for-service component, a rationed GP, according to our results, is likely to compensate for the income loss by providing more services to his patients. This may well happen when a capitation system is introduced, as in Norway from the year 2001.

Acknowledgements

The authors are grateful to the participants, especially Lise Rochaix, at the Sixth European Workshop on Econometrics and Health Economics in Lisbon 10–13 September 1997 for constructive criticism of a previous version of the paper. Suggestions from Sverre Kittelsen, Tor J. Klette and Steinar Strøm have contributed to improving the paper. Three anonymous referees and the Editor have contributed substantially to improving the article. Financial support from the Norwegian Ministry of Health and Social Affairs and the Research Council of Norway is acknowledged.

Appendix A. Derivation of the results in Section 2

We form the Lagrangian related to (1)
\[L(k_1, k_2, n) = w + qn + n \int_0^\infty \{ p_1[\alpha_1(\theta, k_2) + k_1] + p_2[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta \\
+ v[T - n \int_0^\infty \{ t_1[\alpha_1(\theta, k_2) + k_1] + t_2[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta] \\
- \lambda_1(k_1 - \beta_1(\theta)) \\
- \lambda_2(k_2 - \beta_2(\theta)) \\
- \mu(n - \bar{n}) \]

A necessary and sufficient condition for \(k_i \geq 0 \) (\(i=1, 2 \)) and \(n>0 \) to solve the problem is that there are non-negative \(\lambda_1, \lambda_2 \) and \(\mu \) such that

\[
\frac{\partial L(k_1, k_2, n)}{\partial k_i} \leq 0, \quad k_i = 0 \quad \text{or} \quad \frac{\partial L(k_1, k_2, n)}{\partial k_i} = 0 \quad (i = 1, 2) \tag{A.1a}
\]

\[
\frac{\partial L(k_1, k_2, n)}{\partial n} = 0 \tag{A.1b}
\]

\[
k_i \leq \beta_i(\theta), \quad \lambda_i = 0 \quad \text{if} \quad k_i < \beta_i(\theta) \quad (i = 1, 2) \tag{A.1c}
\]

\[
n \leq \pi, \quad \mu = 0 \quad \text{if} \quad n < \bar{n} \tag{A.1d}
\]

The explicit expressions for \(\frac{\partial L}{\partial k_i} \) and \(\frac{\partial L}{\partial n} \) are found from the partial derivatives of the Lagrangian

\[
\frac{\partial L(k_1, k_2, n)}{\partial k_1} = n \int_0^\infty \{ p_1[\alpha_1(\theta, k_2) + k_1] + p_2[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta - \lambda_1 \leq 0
\]

\[
\frac{\partial L(k_1, k_2, n)}{\partial k_2} = n \int_0^\infty \{ p_2[\alpha_1(\theta, k_2) + k_1] + p_1[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta - \lambda_2 \leq 0
\]

\[
\frac{\partial L(k_1, k_2, n)}{\partial n} = q + \int_0^\infty \{ t_1[\alpha_1(\theta, k_2) + k_1] + t_2[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta - v'(l) \\
\times \int_0^\infty \{ t_1[\alpha_1(\theta, k_2) + k_1] + t_2[\alpha_2(\theta, k_1) + k_2] \} f(\theta) \, d\theta - \mu = 0 \tag{A.2}
\]

where

\[
\alpha_{ij} = \frac{\partial \alpha_i(\theta, k_j)}{\partial k_j} \quad (i, j = 1, 2 \text{ and } i \neq j).
\]

Defining \(E_k(\alpha_i) = \int_0^\infty \alpha_{ij} f(\theta) \, d\theta \) is the expected effect of an increase in service no. \(j \) on the minimum provision of service no. \(i \) per patient \(E_n(\alpha_i + k) = \int_0^\infty [\alpha_i(\theta, k_j) + k_j] f(\theta) \, d\theta \) is the expected (ex ante) effect of having an additional patient for the provision of service no. \(i \) (\(i=1, 2 \)).

\[
a = \frac{p_2}{t_2} / \frac{p_1}{t_1} \text{ is fee per time unit of service no. 2 relative to service no. 1.}
\]
Assuming \(t_i + t_j E_{kl}(\alpha_j) > 0 \) (\(i, j = 1, 2 \)), implying that the direct effects are greater than the indirect effects, we can express (A.2) as

\[
v'(l) \geq \frac{(p_1/t_1)[t_1 + at_2 E_{kl}(\alpha_2)] - (\lambda_1/n)}{t_1 + t_2 E_{kl}(\alpha_2)}
\]

\[
v'(l) \geq \frac{(p_1/t_1)[at_2 + t_1 E_{kl}(\alpha_1)] - (\lambda_2/n)}{t_2 + t_1 E_{kl}(\alpha_1)}
\] \(\text{(A.3)} \)

\[
v'(l) = \frac{q + (p_1/t_1)[t_1 E_n(\alpha_1 + k_1) + at_2 E_n(\alpha_2 + k_2)] - \mu}{t_1 + E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}
\]

Consider first the alternatives without constraint on the number of patients, i.e. \(n<\bar{n} \) and hence \(\mu=0 \). Assume then \(0<k_1<\beta_1 \) and \(0<k_2<\beta_2 \), and hence, \(\lambda_1=\lambda_2=0 \). From (A.1) we then have

\[
\frac{q + (p_1/t_1)[t_1 E_n(\alpha_1 + k_1) + at_2 E_n(\alpha_2 + k_2)]}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} = \frac{(p_1/t_1)[t_1 + at_2 E_{kl}(\alpha_2)]}{t_1 + t_2 E_{kl}(\alpha_2)}
\] \(\text{(A.4a)} \)

\[
\frac{q + (p_1/t_1)[t_1 E_n(\alpha_1 + k_1) + at_2 E_n(\alpha_2 + k_2)]}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} = \frac{(p_1/t_1)[at_2 + t_1 E_{kl}(\alpha_1)]}{t_2 + t_1 E_{kl}(\alpha_1)}
\] \(\text{(A.4b)} \)

For \(a=1 \) we see that the left-hand side of both (A.4a) and (A.4b) is larger than the right-hand side, which contradicts the equality sign. For \(a<1 \) the right-hand side of (A.4b) is smaller than the left-hand side, which contradicts the equality sign. For \(a>1 \) the right-hand side of (A.4a) is smaller than the left-hand side. Hence, for \(n<\bar{n}, 0<k_1<\beta_1 \) and \(0<k_2<\beta_2 \) is not a feasible solution.

Consider next \(k_1=k_2=0 \), and hence, \(\lambda_1=\lambda_2=0 \). From (A.1) we then have

\[
\frac{q + (p_1/t_1)[t_1 E_n(\alpha_1 + k_1) + at_2 E_n(\alpha_2 + k_2)]}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} > \frac{(p_1/t_1)[t_1 + at_2 E_{kl}(\alpha_2)]}{t_1 + t_2 E_{kl}(\alpha_2)}
\] \(\text{(A.5a)} \)

\[
\frac{q + (p_1/t_1)[t_1 E_n(\alpha_1 + k_1) + at_2 E_n(\alpha_2 + k_2)]}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} > \frac{(p_1/t_1)[at_2 + t_1 E_{kl}(\alpha_1)]}{t_2 + t_1 E_{kl}(\alpha_1)}
\] \(\text{(A.5b)} \)

The left-hand side of both (A.5a) and (A.5b) is increasing in \('a' \)\(^{20} \) and \(q \). The right-hand side of (A.5a) is decreasing in \('a' \), while the right-hand side of (A.5b) is increasing in \('a' \), and increasing more rapidly with \('a' \) than the left-hand side. (A.5a) and (A.5b) are both fulfilled for \(a=1 \). It then follows that there is an interval \(q < a < \bar{a} \) around \(a=1 \), where the inequality signs are fulfilled and hence, \(k_1=k_2=0 \). This interval increases with \(q \).

By means of similar reasoning, we can show that \(k_1=0 \) and \(k_2=\beta_2 \) are possible if \('a' \) is large enough and \(k_1=\beta_1 \) and \(k_2=0 \) are possible if \('a' \) is small enough.

Appendix B. Optimal service provision under alternative payment systems

We isolate the effect of each of the payment components.

\(^{20}\) An increase in \('a' \) with \(p_1/t_1 \) and \(t_2 \) constant implies an increase in \(p_2 \).
B.1. Fixed salary: \(w > 0, q = p_1 = p_2 = 0 \)

In this case we have from (A.3) that \(v'(l) = 0 \), which implies \(l = 0 \) and is obviously not feasible. Within our line of thought this is not possible without a constraint on leisure in the fixed salary case. The intuition behind this result is straightforward: since there is no community responsibility in the objective function, the physician wants as few patients as possible in order to increase his leisure time. Therefore the leisure constraint is effective. The physician is indifferent between the various feasible combinations of \(k \) and \(n \). We shall not pursue this case further, since a fixed salary is not part of the paper’s empirical section.

B.2. Capitation: \(q > 0, w = p_1 = p_2 = 0 \)

In this case we have

Result B.1: with capitation the number of both services provided to each patient is expected to equal the minimum volume. When the number of patients is an effective constraint, the provision of services per patient is still kept to the minimum level.

With \(q > 0 \) and \(w = p_1 = p_2 = 0 \), we have from (A.3)

\[
\begin{align*}
v'(l) & = \frac{-(\lambda_1/n)}{t_1 + t_2 E_{k1}(\alpha_2)} \\
\text{(B.1a)}
\end{align*}
\]

\[
\begin{align*}
v'(l) & = \frac{-(\lambda_2/n)}{t_2 + t_1 E_{k2}(\alpha_1)} \\
\text{(B.1b)}
\end{align*}
\]

\[
\begin{align*}
v'(l) & = \frac{q - \mu}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} \\
\text{(B.1c)}
\end{align*}
\]

Let us first consider the unconstrained case when \(\mu = 0 \) and accordingly \(0 < n < \bar{n} \). Assume \(0 < k_1 \leq \beta_1 \) and \(0 < k_2 \leq \beta_2 \). Then, according to (A.1a), (A.1c) and (A.1d), \(\lambda_1 \geq 0 \) and \(\lambda_2 \geq 0 \) and (B.1a) and (B.1b) are fulfilled with equality. But this result implies \(v'(l) \leq 0 \), which is inconsistent with \(v'(l) > 0 \) according to (B.1c). Hence, we have \(k_1 = k_2 = 0 \).

Next, consider \(\mu > 0 \) and hence, \(\bar{n} = n \). Again, if \(0 < k_1 \leq \beta_1 \) and \(0 < k_2 \leq \beta_2 \), (B.1a) and (B.1b) are fulfilled with equality and \(v'(l) \leq 0 \), which is inconsistent with \(v'(l) > 0 \). Hence, also in the case with rationing we have \(k_1 = k_2 = 0 \).

The intuition behind result B.1 is straightforward. Since the list of patients is the only income-generating component, the volume of services is chosen equal to the lower constraint and the number of patients is determined such that the marginal income is equal to the marginal value of leisure. When the number of patients is an effective constraint, the provision of services per patient is still kept to the minimum, since the monetary compensation for giving up leisure for services is equal to zero. Hence in the rationed case, the marginal income from patients is larger than the marginal value of leisure.

We can sum up the possible solutions.

- \(0 < n < \bar{n}, k_1 = k_2 = 0 \).
- \(n = \bar{n}, k_1 = k_2 = 0 \).
B.3. Fee per item: $p_1 > 0$, $p_2 > 0$, $q = w = 0$

In this case we have

Result B.2: with fee per item of services the composition of service provision depends upon the income per time unit of providing service no. 1 relative to service no. 2. If the income per time unit is independent of the type of service provided, the optimal volume of service provision is undetermined within the feasible interval. If the income per time unit of providing service no. 1 is larger (smaller) than the income per time unit of providing service no. 2, the maximum (minimum) volume of service no. 1 and the minimum (maximum) volume of service no. 2 are provided. If there is a shortage of patients, even the less profitable service may be provided in excess of the minimum level. The exact volume of service provision depends upon the strength of the patient constraint. When $p_1 > 0$, $p_2 > 0$ and $q = w = 0$, we have from (A.3)

\[
\begin{align*}
v'(l) &\geq \frac{(p_1/t_1)\{t_1 + at_2 E_k(a_2)\} - \lambda_1/n}{t_1 + t_2 E_k(a_2)} \quad \text{(B.2a)} \\
v'(l) &\geq \frac{(p_1/t_1)\{at_2 + t_1 E_k(a_1)\} - \lambda_2/n}{t_2 + t_1 E_k(a_1)} \quad \text{(B.2b)} \\
v'(l) &= \frac{(p_1/t_1)\{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)\} - \mu}{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)} \quad \text{(B.2c)}
\end{align*}
\]

We consider first the cases where $n < n_1$ and $0 < k_1 < \beta_1$ and $0 < k_2 < \beta_2$. Then, according to (A.1a), (A.1c) and (A.1d), $\mu = \lambda_1 = \lambda_2 = 0$ and (B.2a) and (B.2b) are both fulfilled with equality. Then, we have

from (B.2a) \[v'(l) \geq \frac{p_1}{t_1} \iff a \geq 1 \quad \text{(B.3a)} \]

from (B.2b) \[v'(l) \geq \frac{p_1}{t_1} \iff a \leq 1 \quad \text{(B.3b)} \]

from (B.2c) \[v'(l) \geq \frac{p_1}{t_1} \iff a \geq 1 \quad \text{(B.3c)} \]

All three conditions can only be fulfilled for $a = 1$.

Consider next that $n < n_1$ and $k_1 = k_2 = 0$. Then, according to (A.1a), (A.1c) and (A.1d), $\mu = \lambda_1 = \lambda_2 = 0$ and (B.2a) and (B.2b) are both fulfilled with inequality. From (B.2a)–(B.2c) we have

\[
\begin{align*}
\frac{(p_1/t_1)\{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)\}}{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)} &> \frac{(p_1/t_1)\{t_1 + at_2 E_k(a_2)\}}{t_1 + t_2 E_k(a_2)} \quad \text{(B.4a)} \\
\frac{(p_1/t_1)\{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)\}}{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)} &> \frac{(p_1/t_1)\{at_2 + t_1 E_k(a_1)\}}{t_2 + t_1 E_k(a_1)} \quad \text{(B.4b)}
\end{align*}
\]

For $a = 1$ we have shown that (B.4a) and (B.4b) are both fulfilled with equality. The right-hand side of (B.4a) expresses the income per time unit from an increase in k_1. The left-hand side expresses the income per time unit from an increase in the number of patients, n. For $a < 1$
the right-hand side of (B.4a) will be larger than the left-hand side. The reason is that an increase in the number of patients also implies provision of the less well paid service 2. (B.4a) is then not fulfilled. For \(a > 1 \) the right-hand side of (B.4b) is larger than the left-hand side through similar reasoning. Then, (B.4b) is not fulfilled. Hence, \(n < \tilde{n} \) and \(k_1 = k_2 = 0 \) is not a possible solution.

Consider next \(n < \tilde{n}, k_1 = 0 \) and \(k_2 = \beta_2 \). Then, according to (A.1a), (A.1c) and (A.1d), \(\mu = \lambda_1 = 0 \) and \(\lambda_2 > 0 \) and (B.2a) is fulfilled with inequality and (B.2b) with equality. From (B.2a)–(B.2c) we have

\[
\frac{(p_1/t_1)[t_1 E_n(a_1) + at_2 E_n(a_2)]}{t_1 E_n(a_1) + t_2 E_n(a_2)} > \frac{(p_1/t_1)[t_1 + at_2 E_k(a_2)]}{t_1 + t_2 E_k(a_2)} \quad \text{(B.5a)}
\]

\[
\frac{(p_1/t_1)[t_1 E_n(a_1) + at_2 E_n(a_2)]}{t_1 E_n(a_1) + t_2 E_n(a_2)} = \frac{(p_1/t_1)[at_2 + t_1 E_k(a_1)] - (\lambda_2/n)}{t_2 + t_1 E_k(a_1)} \quad \text{(B.5b)}
\]

A quick inspection of the expressions reveals that both (B.5a) and (B.5b) are fulfilled for \(a > 1 \). Hence, for \(a > 1 \) and \(n < \tilde{n} \), we have \(k_1 = 0 \) and \(k_2 = \beta_2 \).

By means of similar reasoning we find that for \(a < 1 \) and \(n < \tilde{n} \), we have \(k_1 = \beta_1 \) and \(k_2 = 0 \).

We may now sum up the results when the number of patients is adjusted freely.

- \(a = 1 \) and \(0 < n < \tilde{n} \) imply \(0 < k_1 < \beta_1 \) and \(0 < k_2 < \beta_2 \).
- \(a < 1 \) and \(0 < n < \tilde{n} \) imply \(k_1 = \beta_1 \) and \(k_2 = 0 \).
- \(a > 1 \) and \(0 < n < \tilde{n} \) imply \(k_1 = 0 \) and \(k_2 = \beta_2 \).

When there is a shortage of patients, even the less profitable service may be provided in excess of the minimum volume. The derivation of the results may be found in Appendix C. The results are summarised as follows.

- \(a = 1 \) and \(n = \tilde{n} \) imply \(k_1 = \beta_1 \) and \(k_2 = \beta_2 \).
- \(a < 1 \) and \(n = \tilde{n} \) imply \(k_1 = \beta_1 \) and \(0 \leq k_2 \leq \beta_2 \).
- \(a > 1 \) and \(n = \tilde{n} \) imply \(0 \leq k_1 \leq \beta_1 \) and \(k_2 = \beta_2 \).

Appendix C. Constrained optimum under alternative payment systems

C.1. Fee per item

Now, consider the case when the number of patients is an effective constraint. Then \(\mu > 0 \). Assume first that \(0 < k_1 < \beta_1 \) and \(0 < k_2 < \beta_2 \). Hence, (B.2a) and (B.2b) are fulfilled with equality. From (B.2a)–(B.2c) we then have

\[
\frac{(p_1/t_1)[t_1 E_n(a_1 + k_1) + at_2 E_n(a_2 + k_2)] - \mu}{t_1 E_n(a_1 + k_1) + t_2 E_n(a_2 + k_2)} = \frac{(p_1/t_1)[at_2 + t_1 E_k(a_1)]}{t_2 + t_1 E_k(a_1)} \quad \text{(C.1a)}
\]

\[
\frac{(p_1/t_1)[t_1 + at_2 E_k(a_2)]}{t_1 + t_2 E_k(a_2)} = \frac{(p_1/t_1)[at_2 + t_1 E_k(a_1)]}{t_2 + t_1 E_k(a_1)} \quad \text{(C.1b)}
\]

For \(a = 1 \) (C.1a) becomes

\[
\frac{p_1}{t_1} - \frac{\mu}{t_1 E_n(a_1) + t_2 E_n(a_2)} = \frac{p_1}{t_1}
\]

which is not possible for \(\mu > 0 \).
For $a<1$, the left-hand side in (C.1.b) is larger than the right-hand side, and for $a>1$ the right-hand side is larger than the left-hand side. Hence, $n=\tilde{n}$, $0<k_1<\beta_1$ and $0<k_2<\beta_2$ is not a possible solution.

Assume next $n=\tilde{n}$, $k_1=\beta_1$ and $0\leq k_2<\beta_2$. Then, according to (A.1a), (A.1c) and (A.1d), $\mu>0$, $\lambda_1>0$ and $\lambda_2=0$ and (B.2a) and (B.2c) are fulfilled with equality and (B.2b) with equality or inequality. From (B.2a)–(B.2c) we have

$$\frac{(p_1/t_1)[t_1E_n(\alpha_1 + k_1) + at_2E_n(\alpha_2 + k_2)] - \mu}{t_1E_n(\alpha_1 + k_1) + t_2E_n(\alpha_2 + k_2)} = \frac{(p_1/t_1)[t_1 + at_2E_k(\alpha_2)] - (\lambda_1/n)}{t_1 + t_2E_k(\alpha_2)} \quad \text{(C.2a)}$$

$$\frac{(p_1/t_1)[t_1 + at_2E_k(\alpha_2)] - (\lambda_1/n)}{t_1 + t_2E_k(\alpha_2)} \geq \frac{(p_1/t_1)[at_2 + t_1E_k(\alpha_1)]}{t_2 + t_1E_k(\alpha_1)} \quad \text{(C.2b)}$$

For $a=1$, (C.2b) becomes

$$\frac{\lambda_1/n}{t_1 + t_2E_k(\alpha_2)} \geq \frac{p_1}{t_1}$$

which is not possible. For $a<1$, (C.2a) and (C.2b) can both be fulfilled. For $a>1$, the right-hand side of (C.2b) is larger than the left-hand side, and (C.2b) cannot be fulfilled.

By means of similar argument $n=\tilde{n}$, $0\leq k_1<\beta_1$ and $k_2=\beta_2$ are a possible solution for $a>1$.

Assume finally that $n=\tilde{n}$, $k_1=\beta_1$ and $k_2=\beta_2$. We then have from (C.2a), (C.2b) and (C.2c)

$$\frac{(p_1/t_1)[t_1E_n(\alpha_1 + k_1) + at_2E_n(\alpha_2 + k_2)] - \mu}{t_1E_n(\alpha_1 + k_1) + t_2E_n(\alpha_2 + k_2)} = \frac{(p_1/t_1)[t_1 + at_2E_k(\alpha_2)] - (\lambda_1/n)}{t_1 + t_2E_k(\alpha_2)} \quad \text{(C.3a)}$$

$$\frac{(p_1/t_1)[t_1 + at_2E_k(\alpha_2)] - (\lambda_1/n)}{t_1 + t_2E_k(\alpha_2)} = \frac{(p_1/t_1)[at_2 + t_1E_k(\alpha_1)] - (\lambda_2/n)}{t_2 + t_1E_k(\alpha_1)} \quad \text{(C.3b)}$$

An inspection of the expressions (C.3a) and (C.3b) shows that these conditions may be fulfilled for all the relevant values of a.

By summing up the results when there is a shortage of patients, we have the following.

- $a=1$ and $n=\tilde{n}$ imply $k_1=\beta_1$ and $k_2=\beta_2$.
- $a<1$ and $n=\tilde{n}$ imply $k_1=\beta_1$ and $0\leq k_2<\beta_2$.
- $a>1$ and $n=\tilde{n}$ imply $0\leq k_1<\beta_1$ and $k_2=\beta_2$.

C.2. Capitation component and fee-per-item component

With a shortage of patients, $n=\tilde{n}$, and hence, $\mu>0$. We then have from (A.3)
\[
q - \mu + \left(\frac{t_1 E_n(\alpha_1 + k_1)}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1}{t_1}\right)\left[\frac{1}{1 + t_2 E_{k1}(\alpha_2)}\right] + \frac{t_2 E_n(\alpha_2 + k_2)}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}
\]
\[
\geq \left(\frac{p_1}{t_1}\right)\left[\frac{1}{1 + t_2 E_{k1}(\alpha_2)}\right] - \left(\frac{\lambda_1}{n}\right)
\]
\[
(C.4a)
\]
\[
q - \mu + \left(\frac{t_1 E_n(\alpha_1 + k_1)}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1}{t_1}\right)\left[\frac{1}{1 + t_2 E_{k2}(\alpha_1)}\right] + \frac{t_2 E_n(\alpha_2 + k_2)}{t_2 + t_1 E_{k2}(\alpha_1)}
\]
\[
\geq \left(\frac{p_1}{t_1}\right)\left[\frac{1}{1 + t_2 E_{k2}(\alpha_1)}\right] - \left(\frac{\lambda_2}{n}\right)
\]
\[
(C.4b)
\]

The magnitude of \(\mu\) relative to \(q\) will have an important role in the constrained case. We shall therefore start by providing an economic interpretation of this relation. The Lagrange parameter \(\mu\) expresses the increase in utility of a marginal loosening of the constraint, i.e. a marginal increase in the number of patients. If \(\mu < q\), the increase in utility is less than the capitation fee. This means that the marginal utility from increasing the volume of services with the optimal composition of services is negative: the marginal value of leisure is larger than the marginal income from service provision. The interpretation of \(\mu = q\) and \(\mu > q\) should then be straightforward.

Consider first \(\alpha = 1\). Then we have from (C.4a) and (C.4b) that
\[
\frac{q - \mu}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1}{t_1} \geq \frac{p_1}{t_1} - \left(\frac{\lambda_1}{n}\right)
\]
\[
(C.5a)
\]
\[
\frac{q - \mu}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1}{t_1} \geq \frac{p_1}{t_1} - \left(\frac{\lambda_2}{n}\right)
\]
\[
(C.5b)
\]
Consider first \(\mu < q\). Then the left-hand side of (C.5a) is larger than the right-hand side. Accordingly, \(k_1 = 0\). The same applies to (C.5b), and accordingly, also \(k_2 = 0\).

Consider next \(\mu = q\). Then we have from (C.5a) and (C.5b) that the equality signs apply and we have \(0 < k_1 < \beta_1\) and \(0 < k_2 < \beta_2\).

Finally, if \(\mu > q\), the equality signs still apply, but now, since we have a negative factor (by \(q - \mu\)) on the left-hand side, we must have \(\lambda_1 > 0\) and \(\lambda_2 > 0\), and hence, \(k_1 = \beta_1\) and \(k_2 = \beta_2\).

Consider next \(\alpha < 1\). Then we have from (C.4a) and (C.4b)
\[
\frac{q - \mu}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1 t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}{\left(\frac{1}{1 + t_2 E_{k1}(\alpha_2)}\right)} \geq \frac{p_1}{t_1} + \frac{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}{\left(\frac{1}{1 + t_2 E_{k1}(\alpha_2)}\right)} - \left(\frac{\lambda_1}{n}\right)
\]
\[
(C.6a)
\]
\[
\frac{q - \mu}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)} + \frac{p_1 t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}{\left(\frac{1}{1 + t_2 E_{k2}(\alpha_1)}\right)} \geq \frac{p_1}{t_1} + \frac{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}{\left(\frac{1}{1 + t_2 E_{k2}(\alpha_1)}\right)} - \left(\frac{\lambda_2}{n}\right)
\]
\[
(C.6b)
\]
Define
\[
A = \frac{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_3)}{t_1 E_n(\alpha_1 + k_1) + t_2 E_n(\alpha_2 + k_2)}
\]
is the income per time unit of providing services to a marginal patient with p_1/t_1 as numeraire ($p_1/t_1 = 1$),

$$B = \frac{t_1 + \alpha_2 t_1 E_k(\alpha_2)}{t_1 + \alpha_2 t_2 E_k(\alpha_2)}$$

is the income per time unit of providing a marginal service no. 1 to the population of patients with p_1/t_1 as numeraire ($p_1/t_1 = 1$)

$$C = \frac{\alpha_2 + t_1 E_k(\alpha_1)}{t_2 + t_1 E_k(\alpha_1)}$$

is the income per time unit of providing a marginal service no. 2 to the population of patients with p_1/t_1 as numeraire ($p_1/t_1 = 1$).

The relations (B.6a) and (B.6b) may then be written as

$$q - \mu \geq A \geq B - \frac{\lambda_1}{n[t_1 + t_2 E_k(\alpha_2)]}$$ \hspace{1cm} (C.7a)

$$q - \mu \geq C - \frac{\lambda_2}{n[t_2 + t_1 E_k(\alpha_1)]}$$ \hspace{1cm} (C.7b)

We first assume $a < 1$. Then we have $C < A < B$.

When $\mu < q$, we have from (C.7a) that the whole interval $0 \leq k_1 \leq \beta_1$ is possible depending on the values of $q - \mu$ and a. The smaller a is, the smaller $q - \mu$ is, the larger is k_1. Since $A > C$ and $q - \mu > 0$, we have from (C.7b) that $k_2 = 0$.

Consider now $\mu = q$. Since $A < B$, we then have from (C.7a) that $\lambda_1 > 0$ and hence, $k_1 = \beta_1$. Since $A > C$, we still have from (C.7b) that $k_2 = 0$.

Consider finally $\mu > q$. Then we still have from (C.7a) that $k_1 = \beta_1$. Since we now have a negative term on the left-hand side of (C.7b), we may have $0 \leq k_2 \leq \beta_2$, depending on the values of $q - \mu$ and a.

With $a > 1$, we have $B < A < C$. By similar reasoning as for $a < 1$ we then have $\mu < q$ gives $k_1 = 0$ and $0 \leq k_2 \leq \beta_2$, $\mu = q$ gives $k_1 = 0$ and $k_2 = \beta_2$ and $\mu > q$ gives $0 \leq k_1 \leq \beta$ and $k_2 = \beta_2$.

References

Kristiansen, I.S., Mooney, G., 1993. The general practitioner’s use of time: is it influenced by the remuneration system? Social Science and Medicine 3, 393–399.

