A Model of Endogenous Quality Management

Donald A. R. George

This paper is concerned with product quality, defined as a kind of durability. Existing models of product quality (in the sense considered here) depend on the idea of signaling, itself driven by an informational asymmetry dictated by “Nature.” The paper proposes an alternative approach, which endogenizes the quality management process. A model is developed that is applicable to the markets for consumer durables and for some intermediate goods. Both competitive and monopolistic markets are considered, and some comparative static results are obtained. © 2000 Elsevier Science Inc.

Keywords: Product quality; Quality control; Warranties

JEL classification: L1, L2

I. Introduction

In the management literature, “product quality” is defined extremely broadly. The term has been used to refer to safety, availability, maintainability, reliability, usability, and even price (see, e.g., Besterfield, 1986). Generally speaking, quality is best thought of as a characteristic of the product with the property that all consumers prefer more of it to less, at a given price. Some such characteristics will be known to the consumer before purchase, while others will not. For personal computers, for example, the former type of characteristic might include the size of the processor chip (486, Pentium, Pentium II, Pentium III, etc.) or its speed (300 Mhz, 450 Mhz, 500 Mhz, etc.), while the latter type might include product lifetime, repair costs, etc. Most goods have characteristics of both types, though the second notion of quality raises more interesting questions for firms, consumers, regulators, and for economic theory. It is the notion of quality dealt with in this paper.

Department of Economics, University of Edinburgh, Edinburgh, United Kingdom.
Address correspondence to: Dr. D. A. R. George, University of Edinburgh, Department of Economics, 50 George Square, Edinburgh EH8 9JY, United Kingdom.
Firms devote considerable resources to influencing the quality of their products. This influence operates at the level of product design, production process, and post-production quality control. The unity of the quality management process is often stressed in the management literature. The distinction between production and quality control decisions is frequently blurred. For example, a firm may seek to raise its production quality by, in effect, demanding tighter quality control from its components suppliers. Thus a production decision in one firm is inseparable from a post-production quality control decision in another. The model developed in this paper incorporates production, quality control, warranty and pricing decisions into the firm’s overall (expected) profit maximizing behaviour. Product design decisions are not considered.

In the model presented here, both firms and consumers will be assumed to be ignorant at the moment of purchase, as to the quality of any given product, though they will be assumed to know the probability distribution of quality. Thus, the model is one of imperfect but symmetric information. It will further be assumed that the firm, though just as ignorant as consumers, is less risk-averse. There thus arises a demand, on the part of consumers, for insurance. This might, for example, be provided in the form of a product warranty offered by the firm, or an insurance policy provided jointly with the product. In the case of intermediate goods, “consumers” may be thought of as firms and “warranties” as compensation clauses built into standard supply contracts. Heal (1977) develops a model, involving warranties, which adopts precisely these informational assumptions. He remarks:

“Typically the quality control is sufficiently imperfect that no one [i.e., neither seller nor buyer] will know in advance of [a product’s] use what [its] quality will be, and consequently some form of guarantee will be offered.” [Remarks in brackets added.]

In Heal’s model, the firm is assumed to produce a probability distribution of qualities which is simply taken as given. He does not seek to model the process by which the firm attempts to alter that distribution. In this paper this process is modeled. In particular, the firm is able to influence the distribution of quality in its marketed output, both by production (choice of technique) decisions and by quality control decisions. It will also be able to offer a product warranty to the market. A standard problem, often assumed away, in the literature on quality, is that of moral hazard on the part of consumers. If consumers can themselves influence the probability or size of a claim under the warranty, for example by failing to take proper care of the good during consumption, then the economic role of warranties may be reduced. See, for example McKean (1970), Oi (1973), and Priest (1981). For simplicity, moral hazard will be assumed away in this paper. Warranties, whether voluntary or legally compelled, have an important bearing on quality management decisions because the higher the quality of a firm’s marketed output, the lower the likely warranty costs experienced by the firm. Thus, warranties provide the firm with an incentive to market high-quality products. This connection between warranties and quality management has been apparent to managers for some time. Wright (1980), for example, describes events at General Motors:

“I instituted a programme for testing and repairing faulty cars as they came off the assembly line—and the results were phenomenal. It cost about $8 a car, which drove The Fourteenth Floor up the wall. But I figured one way or the other we would end up fixing the defects or paying to have them fixed through recall campaigns or dealer warranty bills . . . The internal quality control audit revealed a 66% improvement in the quality of
a Chevrolet coming off the assembly line between 1969 and 1973 models. And most important, warranty costs of our new cars were down substantially.”

The existing economics literature deals with both the notions of quality discussed above. When quality is known to consumers before purchase, the focus of interest is screening. The seller will be ignorant as to the preferences of any individual consumer, although he may be assumed to know the distribution of preferences across the population. His problem then is to provide a price-quality schedule, perhaps along with a warranty arrangement, to the market, with a view to screening consumers, and thus extracting the maximum surplus from them. The firm produces a “product line,” deliberately differentiating his product by quality. An obvious example is personal computers: most manufacturers produce a product line involving different processing speeds, amount of RAM, size of hard disk, etc. Authors who develop screening models of quality include Mussa and Rosen (1978) and Matthews and Moore (1987). Signaling models, by contrast deal with a different asymmetry of information, namely one concerning the product itself. Such models are driven by exogenous “type uncertainty.” That is to say “Nature” dictates a firm’s quality, which is then known to that firm but not to consumers. The firm’s problem then is to signal its quality to consumers using price, warranties and possibly advertising. In a repeat purchase framework, the firm may be able to build up a “reputation” for quality. Authors who develop signaling models of quality include Grossman (1981), Milgrom and Roberts (1982, 1986), Kreps and Wilson (1982), Klein and Leffler (1981), Shapiro (1983), and McClure and Spector (1991).

This paper is concerned with markets in which consumers do not know the quality of individual products before purchase. Screening models do not deal with this notion of quality. Signaling models, by contrast, do analyze this concept of quality, but they do so in a way that treats quality as exogenous and not affected by the firm’s decisions. Both screening and signaling models place the emphasis of the analysis on an asymmetry of information. The approach of this paper is to allow firms’ choice of technique and quality control decisions to influence product quality under conditions of imperfect but symmetric information.

Section II describes a theoretical approach to modeling quality management and section III develops this approach into a tractable model. Section IV describes the demand side of the economy, while section V covers the supply side. Equilibrium and comparative statics are discussed in section VI, and section VII concludes. Mathematical details are relegated to an Appendix (equation numbers prefixed with the letter A refer to equations in the Appendix).

II. An Approach To Modeling Quality Management

This paper will distinguish two main classes of decision that influence product quality, namely choice of technique decisions and quality control decisions. “Quality” will be modeled as a variable \(q \) drawn from the interval \([0, 1]\), and the firm’s produced output will be modeled as a frequency distribution function \(X: [0, 1] \rightarrow \mathbb{R}_+ \) (see Figure 1). The firm will be assumed able to expand or contract the scale of production by a factor \(\lambda \geq 0 \). The firm will be assumed to have available a spectrum of techniques, indexed by a real variable \(t \), each generating a different distribution function. We may therefore index the distribution function \(X \) with the variable \(t \). That is to say the volume of production with quality lying between \(r \) and \(s \) is given by:
By choosing technique \(t \), the firm can influence various parameters of the distribution function \(X \), such as the mean and variance. Thus the firm cannot determine the quality of each individual product but it can determine the average quality of its production. By varying \(\lambda \), the firm can also determine the volume of production.

In addition to choice of technique decisions, it will be assumed that the firm can undertake some post-production quality control. By applying techniques such as product testing and batch sampling, it can obtain some information as to the quality of its products. It can then decide which products to market and which to scrap or rework. For example, it may set a quality threshold and market all products believed to be above the threshold and scrap or rework all products below it. Such a process, which will be termed a “quality filter,” need not be perfectly accurate, so that low-quality products may inadvertently get marketed while high-quality ones are unnecessarily reworked or scrapped. Formally, a quality filter may be defined as a function \(P(q) \) such that \(P:[0, 1] \rightarrow [0, 1] \) (see Figure 2), where \(P(q) \) is the probability that a product of quality \(q \) will be marketed. Thus the total marketed output of the firm will be given by:

\[
\lambda \int_{q}^{1} P(q) X(q) \, dq
\]

(2)

Quality control decisions thus amount to choosing parameters of the function \(P \). In taking such decisions, the firm will clearly take into account the scrap or rework value of products which fail the quality filter. For products such as silicon chips, with virtually

Figure 1. The distribution of qualities in the firm’s output.

Figure 2. A “quality filter.”
costless disposal, this scrap/rework value may be taken to be zero. For products requiring costly disposal, the rework value may be taken to be negative, while for goods such as domestic appliances, which can be readily reworked, it will be positive.

In general, quality management decisions will be taken in the light of demand conditions, production costs, expected warranty costs, rework value, and competitive pressures. While the approach described above does capture the essentials of quality management, it is too general to be readily applied. In the next section a less general, but more tractable version of this approach is developed.

III. A Tractable Model of Quality Management

The notion of “quality” that this paper will focus on is “durability,” defined as the probability that the product will not break down during a particular period (the warranty period). Some products, such as light bulbs or silicon chips, either function or fail to function, so that this approach presents no difficulties. For other products, such as motor vehicles, which are subject to different degrees of breakdown, it is obviously a simplification. For simplicity, the warranty period will be treated as exogenous throughout the paper. The firm will be assumed to produce a range of physical types of its product. However, the product’s lifetime will not be assumed to be uniquely determined by its physical type: there will be other, random, factors at work. In the case of light bulbs or silicon chips, these might include air temperature or mains voltage fluctuations for example. Thus, for each physical type of product, there will be a probability that it will not break down during any given time interval (such as the warranty period). We may therefore identify “type” with “probability of not breaking down during the warranty period,” that is with “quality.” It will be assumed later that, even though consumers do not know the quality of any particular product before consumption takes place, they do know the probability distribution of qualities. The same information will be assumed to be available to the firm, and the situation is thus one of imperfect but symmetric information.

The firm’s distribution of produced qualities (the \(X\) function of Section II) will be taken to be uniform with mean \(b\) and a fixed variance. The firm will be assumed to have available a spectrum of techniques each corresponding to a different mean quality of produced output (i.e., a different \(b\)): higher quality techniques will be assumed more costly to operate than lower quality ones. A distribution function of produced qualities is depicted in Figure 3. Note that it is uniform on the interval \([b - h, b + h]\).

The firm can thus influence the quality of its products by choice of technique. It will also be assumed to undertake some post-production quality control. In particular the quality filter of Section II (i.e., the \(P\) function) will be taken to be a step function. That
is, the firm can set a threshold or “stringency” level (a) of quality such that all products exceeding that level are marketed, while all products falling short of it are reworked or scrapped. Such a quality filter is depicted in Figure 4. Note that it is a perfectly accurate quality filter in the sense that there is a zero probability of “bad” products being marketed or “good” ones being reworked or scrapped. Scrap/rework value will be taken to be constant at v per unit.

Figure 5 depicts the effect of combining production and quality control. Note that $b - h < a < b + h$.

IV. The Demand Side

It will be assumed that there are D risk-averse consumers with identical preferences, each consuming $1/D$ units of the good. (Thus the total marketed output is equal to unity.) In the case of an intermediate good, these consumers can be thought of as other firms. Buyers know nothing about the quality of the particular goods they are buying, though they can deduce the distribution of qualities across marketed output. The seller offers a contract to the market that consists of a price (p) and a warranty payment (B). This contract requires the seller to make a payment of B per unit, to the buyer if the product breaks down within the warranty period. There will be assumed to be no costs of enforcing such a contract. The warranty contract may be thought of a consumer guarantee or an insurance policy provided jointly with the product or, in the case of an intermediate good, a compensation clause built into the standard inter-firm supply contract. The problem of moral hazard (on the part of buyers) is assumed away.

Each consumer is assumed to have a budget of M and to receive a stream of services from the product. If the product does not break down within the warranty period, this stream of services, derived from $1/D$ units of product, is worth R to the consumer, while
if it does break down the stream of services is worth $aR (\alpha < 1)$. Thus the consumer receives income M if she doesn’t buy the product, $x = M - pD + R$ if she buys and the product doesn’t break down, and $y = M - pD + aR + \beta D$ if she buys and the product does break down. She is assumed to choose a contract so as to maximize expected utility $V(x, y) = \Pi U(x) + (1 - \Pi) U(y)$ where Π is her subjective probability that the product will not break down during the warranty period. Sellers’ maximizing decisions are clearly subject to the voluntary participation constraint:

$$V(x, y) \geq U(M). \quad (3)$$

If this constraint were not satisfied the consumer would clearly not consume the product at all. Note that the consumer is assumed risk-averse, so that $U''(\cdot)$ must be strictly negative. Throughout the paper it will be assumed that the consumers’ subjective probability that the product does not break down is equal to the objective probability (i.e., the average quality of marketed output, Q). This average quality is determined by the quality management decisions of sellers, and of course the consumer cannot observe these decisions directly. Moreover the model set up here does not admit repeat purchasing, so the consumer cannot learn about average quality over time. Nonetheless, there is no asymmetry of information so the consumer could in principle deduce the seller’s quality control decisions and thus deduce average quality.

Consumers will be just on the point of purchase when equation (3) holds with equality. Substituting for x and y in equation (3) therefore allows a reservation price p^* to be determined. Because expected utility ($V(x, y)$) depends on average quality (Q) and the warranty payment (β), the reservation price will also depend on these variables. Thus the market demand curve always has the step function appearance of Figure 6, but the price p^* at which the step occurs will, in general, depend on the warranty payment and the average quality of marketed output. These variables, in turn, depend on the quality management decisions of firms. Adopting a step function demand curve allows the focus of attention to be placed entirely on quality effects, abstracting from variations in quantity.

V. The Supply Side

Quality costs are discussed at some length in the management literature. Groocock (1986) points out:

"Because the products might be defective, they must be inspected and tested. This results in appraisal costs . . . Products may also fail a test or inspection, or may fail in the hands of customers. Failure costs are then incurred . . . (since the firm) must rework or replace the failed product during manufacturing, or replace or repair the product for customers, for example, under warranty." (Groocock, 1986, p. 53)
The model developed here formalizes these costs as quality control costs, rework costs and expected warranty costs. Sellers will be assumed to be risk-neutral maximizers of expected profit. Average and marginal production costs, for a given technique, will be assumed constant. Thus the volume of marketed output will be determined by the size of the market (and will thus be normalized to unity, given the assumptions of Section IV above), and the focus of attention is thus placed on the firm’s quality management decisions. The firm’s expected profit is given by:

\[\Phi = \text{revenue} - \text{production costs} - \text{quality control costs} + \text{rework value} - \text{expected warranty costs}. \]

(4)

Note that rework value might be positive, zero, or negative. From Figure 5, it is clear that marketed output (\(z\)) is given by:

\[z = (b + h - a)K \]

(5)

By the assumptions of Section IV above, \(z\) is normalized to unity. Thus we have:

\[K = 1/(b + h - a) \]

(6)

It is now easy to derive an expression for \(N\), the firm’s total produced output. From Figure 5:

\[N = 2hK = 2h/(b + h - a) = N(a, b) \]

(7)

It is clear from Figure 5 that the average quality of marketed output is given by:

\[Q = (b + h + a)/2 = Q(a, b) \]

(8)

Average and marginal production costs will be assumed constant for a given technique, but increasing in the quality level \((b)\) of that technique. This is captured by the production cost function:

\[\text{production costs} = \gamma bN \ (\gamma \text{ a constant}) \]

(9)

Quality control costs will be assumed to depend only on the volume of products processed and not on the stringency level chosen. In many quality control processes (such as batch sampling), the entire output is not processed, but is reasonable to assume that the quantity processed is proportional to the quantity produced. It will further be assumed that there are no economies or diseconomies of scale in quality control. A suitable quality control cost function is therefore:

\[\text{quality control costs} = \delta N \ (\delta \text{ a constant}) \]

(10)

Because a total of one unit is marketed, the volume of reworked (or scrapped) output is \(N - 1\). Since each reworked product is worth \(v\) to the firm, we have

\[\text{total rework value} = v(N - 1) \]

(11)

The expected number of products failing during the warranty period is simply \(1 - Q\). Thus we have:

\[\text{expected warranty costs} = \beta(1 - Q) \]

(12)
Combining equations (9) to (12) and substituting in equation (4) we obtain an expression for the firm’s expected profit:

\[\Phi = p - \gamma b N(a, b) - \delta N(a, b) + v(N(a, b) - 1) - \beta(1 - Q(a, b)) \] (13)

VI. Equilibrium and Comparative Statics

It is clearly of interest to analyze 1) the influence of competition on the firm’s quality management decisions and 2) the (comparative static) effects on those decisions of varying the various parameters in the model. These latter effects provide predictions of the model that are, at least in principle, open to empirical test. I know of no econometric or case studies that address these issues, which therefore suggest a direction for future research. In this section, therefore, monopoly equilibrium and competitive equilibrium are defined below.

A monopoly equilibrium is a vector \((p, \beta, a, b)\) which maximizes expected profit \((\Phi)\) subject to the voluntary participation constraint [see equation (3)]. This constraint binds in monopoly equilibrium (Appendix: Proposition 1). To characterize a monopoly equilibrium, we take a multiplier \(\lambda\) for the voluntary participation constraint [equation (3)] and form the Lagrangian:

\[L(p, \beta, a, b) = \Phi + \lambda[V(x, y) - U(M)] \] (14)

Substituting for \(\Phi\) from equation (13), we obtain:

\[L(p, \beta, a, b) = p - \gamma b N(a, b) - \delta N(a, b) + v(N(a, b) - 1) - \beta(1 - Q(a, b)) + \lambda[V(x, y) - U(M)] \] (15)

Note that:

\[x = M - p/D + R \] (16)

and:

\[y = M - p/D + aR + \beta/D \] (17)

On the assumptions of Section IV we have \(Q = Q\) and thus:

\[V(x, y) = Q(a, b)U(x) + (1 - Q(a, b))U(y) \] (18)

A competitive equilibrium is a vector \((p, \beta, a, b)\) which maximizes expected utility \((V)\) subject to the constraint \(\Phi \geq 0\). This constraint binds in competitive equilibrium (Appendix: Proposition 5). That is to say a zero expected profit condition holds. This may be interpreted as a consequence of free entry or of Bertrand competition. To characterize a competitive equilibrium we take a multiplier \(\mu\) for the expected profit constraint and form the Lagrangian:

\[M(p, \beta, a, b) = V(x, y) + \mu \Phi \] (19)

Substituting for \(V\) and \(\Phi\) yields:

\[M(p, \beta, a, b) = Q(a, b)U(x) + (1 - Q(a, b))U(y) + \mu[p - \gamma b N(a, b) - \delta N(a, b) + v(N(a, b) - 1) - \beta(1 - Q(a, b))] \] (20)
It is now possible to establish that competition generates the same quality management decisions (and hence the same product quality) as monopoly, (Appendix: Proposition 7) but the competitive price is lower: it falls until expected profits are zero (Appendix: Proposition 5). The comparative static results as therefore the same for monopoly as for competition. It is also established in the Appendix (Propositions 2 and 6) that firms, under monopoly and under competition, will voluntarily offer a “full compensation” warranty, thus fully insuring consumers.

We now derive some comparative static results. They all concern the effect of parameter shifts on the quality management variables \((a\) and \(b\)) and hence on average product quality \((Q)\). The stringency of quality control might be thought more flexible than the choice of technique. Thus effects on the former might be considered to operate in the “short run”, while effects on the latter might be treated as operating in the “long run”. This interpretation might, for instance, have a bearing on the appropriate specifications of models for econometric testing.

Using Propositions 2 and 6 (see Appendix), we may substitute for \(b\) in (A5) and (A6). This gives:

\[
\begin{align*}
 b &= \gamma h / (D(1 - \alpha)R) + (v - \delta)/\gamma \\
 a &= -\gamma h / (D(1 - \alpha)R) + (v - \delta)/\gamma + h
\end{align*}
\]

As mentioned in Section IV, the market demand curve has the form of a step function. The price at which the step occurs is easy to derive. It is the reservation price at which consumers are indifferent between consuming and not consuming the good. It must therefore satisfy the condition:

\[
QU(x) + (1 - Q)U(y) = U(M)
\]

Under both monopoly and competition, firms offer a “full compensation” warranty (Appendix: Propositions 2 and 6), so that \(x = y\). Equation (23) therefore reduces to:

\[
\begin{align*}
 x &= M \\
 \Rightarrow & M - p/D + R = M \\
 \Rightarrow & p = DR
\end{align*}
\]

It is clear from equation (24) that the price at which the step occurs is equal to \(DR\). Thus, an increase in \(R\) is equivalent to an upward shift in the demand curve. Note that the monopoly price is also \(DR\) (Appendix: Proposition 3), so that the monopolist extracts all the surplus. Under competition the price falls until profits are zero (Appendix: Proposition 5) and, hence, consumers extract all the surplus.

6.1. Comparative Static Results (Supply Side Shifts)

Inspection of equations (21), (22), and (A16) yields the following comparative static results.

(a) If \(v > \delta\) the sign of \(db/d\gamma\) is ambiguous but \(dal/d\gamma < 0\), and \(dQ/d\gamma < 0\).

(b) If \(v < \delta\) then \(db/d\gamma > 0\) but the sign of \(dal/d\gamma\) is ambiguous, and \(dQ/d\gamma > 0\).
For high rework values, a decrease in production costs raises the stringency of quality control and raises the average quality of marketed products. For low rework values, a decrease in production costs lowers the production quality level and lowers the average quality of marketed output. This suggests that industries such as cars, with relatively high rework values, should be separated from industries such as silicon chips, with relatively low rework values. (Consumer durables such as washing machines might form an intermediate category). The first group of industries should demonstrate an increase in product quality following an innovation which reduces production costs. Assuming, as above, that the stringency of quality control is flexible in the short run, this should be a short-run effect. The second group of industries should demonstrate a decrease in product quality following an innovation which reduces production costs. Assuming, as above, that production technique is flexible only in the long-run, this should be a predominately long-run effect.

\[
\frac{db}{db} < 0, \frac{da}{db} < 0 \text{ and } \frac{dQ}{db} < 0.
\]

A decrease in quality control costs raises the production quality level and the stringency of quality control, and raises the average quality of marketed products. An innovation which lowers quality control costs should raise product quality. On the flexibility assumptions made above, this effect on quality should occur in the short- and the long-run and be greater in the long-run.

\[
\frac{db}{dv} > 0, \frac{da}{dv} > 0 \text{ and } \frac{dQ}{dv} > 0.
\]

An increase in rework value raises the production quality level and the stringency of quality control, and raises the average quality of marketed products. On the flexibility assumptions made above, this effect on quality should occur in the short- and the long-run and be greater in the long-run.

6.2. Comparative Static Result (Demand Side Shifts)

Inspection of equations (21), (22), and (A16) yields the following comparative static result.

\[
\frac{db}{dR} < 0, \frac{da}{dR} > 0 \text{ and } \frac{dQ}{dR} = 0
\]

An upward shift in the demand curve raises the stringency of quality control but lowers the average production quality level. An increase in demand should, on the flexibility assumption made above, generate a short-run increase in quality brought about by an increase in the stringency of quality control. In the long-run this effect is exactly offset by a decrease in the average production quality level, and the overall long-run impact on product quality is zero.

VII. Conclusions

It is frequently the case that the quality of individual products is unknown to consumers before purchase. In this situation, the determination of product quality and of warranty
contracts need not be modeled as the consequence of type-uncertainty, treating quality as
ddictated exogenously by “Nature.” For many industries including cars, consumer durables,
and some intermediate products, it is plausible to assume that both seller and buyer know
the distribution of qualities in the seller’s output, but not the quality of any individual
product. The paper presents a model, based on this assumption, in which the determination
of product quality is treated as an aspect of the firm’s (expected) profit-maximizing
decision. Product quality is taken explicitly to depend upon factors over which actual
businesses have control, namely the firm’s choice of technique and its quality control
decisions. Choosing higher quality techniques and undertaking quality control are both
costly, but they will still be undertaken because warranty commitments provide the
appropriate incentive. There need be no legal compulsion to force firms to offer warran-
ties. If buyers are more risk-averse than sellers, a demand for insurance arises, which will
induce sellers to offer warranties voluntarily. In the model presented, firms under mo-
nopoly and under competition voluntarily offer a “full compensation” warranty.

The paper shows that monopolies will take the same quality management decisions as
competitive industries, offer the same average quality of output and offer the same
warranty deal (a “full compensation” warranty). They will, however, do this at a higher
price. In fact, a monopolist will extract all the surplus, while, under competition, it all goes
to consumers.

The paper also derives some comparative static results that could form the basis for
empirical testing. They allow different industries to be distinguished, and they separate
long-run from short-run effects. Both supply side and demand side effects are analyzed.

The quality management process is complicated, and the model presented here inev-
itably simplifies that process. Nonetheless, quality management is central to the determi-
nation of the quality of marketed output, and the economic analysis of product quality
should therefore include a treatment of this aspect of the firm’s behavior.

Appendix

This Appendix contains the proofs of the results used in the main text.

Proposition 1
The voluntary participation constraint binds in monopoly equilibrium

Proof
Differentiating (15) w.r.t. p we obtain one of the first order conditions for an interior
maximum:

\[L_p = 1 + \frac{\lambda}{D} [-QU'(x) - (1 - Q)U'(y)] = 0 \] \hspace{1cm} (A1)

Hence \(\lambda \neq 0 \) and, by complementary slackness, the voluntary participation constraint
must bind.

It is now straightforward to prove:

Proposition 2
In monopoly equilibrium the warranty payment (\(\beta \)) is equal to \(D(1 - \alpha)R \), and thus the
consumer receives the same income stream regardless of whether the product breaks down
or not, and is thus fully insured (i.e., \(x = y \)).
Proof
Differentiating equation (15) w.r.t. \(\beta \) yields another first order condition for an interior maximum:

\[
\frac{\partial L}{\partial \beta} = (Q - 1) + (\lambda/D)(1 - Q)U'(y) = 0 \tag{A2}
\]

\[
\Rightarrow \left(\frac{\lambda}{D}\right)U'(y) = 1 \tag{A3}
\]

Using equation (A3) to substitute for \(\lambda/D \) in equation (A1) we obtain:

\[
-\left[QU'(x)/U'(y) + 1 - Q \right] = 0
\]

\[
\Rightarrow U'(x) = U'(y) \tag{A4}
\]

Because \(U''(\cdot) \) is strictly negative, the function \(U'(\cdot) \) is invertible. It follows from equation (A4) that \(x = y \) and, hence, [by equations (16) and (17)] that \(\beta = D(1 - \alpha)R \), as required.

Combining Propositions 1 and 2, it is straightforward to establish:

Proposition 3
The monopoly price is given by \(p = DR \). Thus the monopolist extracts all the surplus.

Proof
Because the voluntary participation constraint binds (Proposition 1) we have:

\[
QU(x) + (1 - Q)U(y) = U(M)
\]

From Proposition 2 we have \(x = y \) and hence: \(U(x) = U(M) \). The function \(U(\cdot) \) is invertible because \(U'(\cdot) \) is strictly positive. Hence \(x = M \) and the result follows, using equations (16) and (17).

Attention is now turned to equilibrium quality management decisions. We first derive expressions for \(b \) (the production quality level) and \(a \) (the quality control stringency level).

Proposition 4
In monopoly equilibrium, the production quality level \(b \) is given by:

\[
b = \frac{gh}{\beta} + (v - \delta)/\gamma \tag{A5}
\]

In monopoly equilibrium, the quality control stringency level \(a \) is given by:

\[
a = -\frac{gh}{\beta} + (v - \delta)/\gamma + h \tag{A6}
\]

Proof
Differentiating equation (15) w.r.t. \(a \) gives, as a first-order condition for an interior maximum:

\[
L_a = (v - \gamma b - \delta)N_a + \beta Q_a + \lambda [Q_a U(x) - Q_a U(y)] = 0 \tag{A7}
\]

From equation (7) we have:
\[N_a = 2h/(b + h - a)^2 \]

(A8)

and:

\[N_b = -2h/(b + h - a)^2 \]

(A9)

From equation (8) we have:

\[Q_a = Q_b = 1/2 \]

(A10)

Noting that \(x = y \) (from Proposition 2) and substituting these expressions into equation (A7) yields:

\[\frac{(v - \gamma b - \delta)2h}{(b + h - a)^2} + \beta/2 = 0 \]

(A11)

Differentiating equation (15) w.r.t. \(b \) gives, as a first-order condition for an interior maximum:

\[L_b = -\gamma N + (v - \gamma b - \delta)N_b + \beta Q_b + \lambda [Q_bU(x) - Q_bU(y)] = 0 \]

(A12)

Noting that \(x = y \) (from Proposition 2), we may substitute from equations (7), (A9), and (A10) to obtain:

\[\frac{-\gamma 2h}{b + h - a} - \frac{(v - \gamma b - \delta)2h}{(b + h - a)^2} + \beta/2 = 0 \]

(A13)

Adding equations (A11) and (A13) yields:

\[\frac{-\gamma 2h}{b + h - a} + \beta = 0 \]

(A14)

\[\Rightarrow b + h - a = \frac{\gamma 2h}{\beta} \]

(A15)

Substituting from equation (A15) into equation (A11) and re-arranging yields equation (A5). Substituting equation (A5) into equation (A15) and re-arranging gives equation (A6). Substituting equations (A5) and (A6) into equation (8) gives:

\[Q = (v - \delta)/\gamma + h \]

(A16)

Proposition 5

In competitive equilibrium, the expected profit constraint is binding (i.e., \(\Phi = 0 \)).

Proof

Differentiating equation (20) w.r.t. \(p \) yields one of the first order conditions for an interior maximum:

\[M_p = -\frac{QU'(x)}{D} - \frac{(1 - Q)U'(y)}{D} + \mu = 0 \]

(A17)
Because $U'(\cdot) > 0$, it follows that $\mu \neq 0$. Thus, by complementary slackness, it follows that the expected profit constraint is binding.

We now establish:

Proposition 6

In competitive equilibrium the warranty payment (β) is equal to $D(1 - \alpha)R$, and thus the consumer receives the same income stream regardless of whether the product breaks down or not, and is thus fully insured (i.e., $x = y$).

Proof

Differentiating equation (20) w.r.t. β yields another first-order condition for an interior maximum:

$$M_{\beta} = \frac{(1 - Q)U'(y)}{D} - \mu(1 - Q) = 0$$

(A18)

Thus $\mu = U'(y)/D$. Substituting for μ in equation (A17) gives $U'(x) = U'(y)$. Since $U''(.)$ is strictly negative, the function $U'(\cdot)$ is invertible. Thus $x = y$ as required.

We now prove:

Proposition 7

Equilibrium production quality decisions and quality control decisions are the same under competitive equilibrium as under monopoly equilibrium.

Proof

Differentiating equation (20) w.r.t. a and b yields the remaining two first-order conditions for an interior maximum:

$$M_a = \mu[-\gamma bN_a + \delta N_a + v N_a + \beta Q_a] = 0$$

(A19)

Noting that $\mu \neq 0$ and using equations (A8), and (A10) yields equation (A11).

$$M_b = \mu[-\gamma(N + bN_b) - \delta N_b + v N_b + \beta Q_b] = 0$$

(A20)

Noting that $\mu \neq 0$ and using equations (7), (A9), and (A10) yields equation (A13).

Because equations (A11) and (A13) hold under competitive equilibrium, equations (A5), (A6), and (A16) must also hold.

Precursors of this paper have been presented in seminars at the University of Edinburgh, Stirling University, Queen’s University (Belfast), University of East London, Kingston University, Staffordshire University, University of Melbourne (Australia), University of Waikato (New Zealand), University of Canterbury (New Zealand), Hamilton College/Colgate University joint seminar (USA), and Queen’s University (Canada). I am grateful for the invitations to those seminars and for the constructive comments made. I am particularly indebted to John Hardman Moore, Simon Clark, and two anonymous referees of this journal. I am also grateful to the Travel and Research Committee of the Faculty of Social Sciences, University of Edinburgh, for a grant. The usual disclaimer applies.
References