A note on eliciting distributive preferences for health

Jan Abel Olsen *

Institute of Community Medicine, University of Tromsø, 9037 Tromsø, Norway
Health Economics Research Programme at the University of Oslo (HERO), Norway

Received 8 September 1998; received in revised form 28 July 1999; accepted 7 December 1999

Abstract

While in theory the strength of preferences for equity in health can be expressed in an ‘inequality aversion parameter’, in practice, analysts would have to obtain them from people’s choices. We are faced with a number of methodological problems when turning to this type of empirical research. This note investigates which types of preference could explain the choices people make when responding to equity-efficiency questions of this kind. Respondents may be heavily influenced by concerns that are not related to their equity preferences, something which may lead them to choose distributions that are not consistent with models on the equity-efficiency trade-off. Specifically, a threshold effect is identified, which could explain why some people would rather prefer to concentrate than to diffuse health gains. The second aim of this note is to offer some lessons from a survey which was designed for eliciting people’s distributive preferences for health gains. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Health care programmes; Distributive preferences; Welfare function

1. Introduction

The types of cost-effectiveness analyses used in economic evaluations of health care programmes ignore differences in the distribution of total health gains across...
patients when comparing programmes, i.e., whether the gains are distributed with a little to each of the many or with much to each of a few. Acknowledging that this does not correspond with an important aspect of equity in health, Wagstaff (1991) applied a social welfare function, to illustrate a possible trade-off between the maximization of the sum of health and its distribution. He suggested that the strength of preferences for equity could be expressed in an ‘inequality aversion parameter’. Following Wagstaff’s contribution, there are more recent theoretical papers in this journal on QALYs and the equity-efficiency trade-off (see, e.g., Culyer and Wagstaff, 1993; Clark, 1995; Olsen, 1997; Dolan, 1998).

However, while in theory preferences can be elegantly expressed within a formula, in practice, analysts would have to obtain them from peoples’ choices. So, if these trade-offs are to be taken into account in economic evaluations, we are faced with a considerable methodological problem — that of how to elicit distributive preferences in order to adjust the social value of health gains.

The aims of this note are; first, to explore which types of preferences could explain choices of this kind. This is important as the answers may be heavily influenced by concerns not related to one’s equity preferences, and hence lead respondents to choosing distributions which are not consistent with models on the equity-efficiency trade-off. Specifically, a threshold effect is identified, which could explain why some people would rather prefer to concentrate than to diffuse health gains. The second aim is to offer some lessons from a survey that was designed for eliciting peoples’ distributive preferences for health gains.

2. Theoretical background

We shall distinguish between which distributive preference a respondent reveals in a choice and which underlying preferences could explain this choice.

2.1. Three ‘preference camps’

In cost-utility analyses, two programmes (with identical costs) are considered to be equally good, i.e., their social values are identical, if the total sum of QALYs are the same:

\[v(Pq) = v(pQ), \text{ when } Pq = pQ. \] (1)

\(p \) and \(P \) refer to numbers of persons \((P > p) \), while \(q \) and \(Q \) refer to number of QALYs gained per person. Of course, this would hold only if the discount rate is set at zero, an assumption to which we will return.
being *distributive neutral* (Olsen, 1997). In other words, they are maximizers since the only thing that should matter is to have the largest possible health gains.

The equity-efficiency trade-off, however, implies a preference for distributing a given total QALY-sum with a small gain to each of many rather than a large gain to each of a few. Thus, the equality sign of Eq. (1) is substituted by an inequality sign in:

\[v(Pq) > v(pQ), \text{ when } Pq = pQ \text{ and } P > p. \] (2)

Those who support Eq. (2) will be referred to as *diffusors*, because of their preference for spreading the gains over the many. While they would seem to reveal a preference for equity, their ‘pure’ equity preferences do not have to be any stronger than among those in the other camps (see Section 2.2).

The inequality sign in Eq. (2) could, however, take the reverse direction. Elitists may hold such preferences, but there is a different argument in support of this seemingly counter-intuitive distributive preference: If the \(q \) represents a very small gain, there may be a preference for substantial improvements for the few rather than insignificant improvements for the many.\(^2\) Those who reveal such distributional preferences will be referred to as the *concentrators*.

The methodological challenge, then, becomes that of finding combinations of \(P, p, Q \text{ and } q \), which satisfies:

\[v(Pq) = v(pQ), \text{ when } q < Q \text{ and } P > p. \] (3)

The issue is essentially a simple and basic welfare economic one of finding two combinations of two goods to which the respondent is indifferent. In this case, the two (normal) goods are number of persons benefiting and QALYs gained.\(^3\)

Thus, when responding to a choice of this kind, in principle people would put themselves in either of three camps: *maximizers* who care only about the size of the total health effects; *diffusors* who would go for the larger number of persons; and *concentrators* who would rather have a large effect for each beneficiary. In practice, however, respondents do not put themselves in one of these camps based on their distributive preferences only. Rather, they end up in one camp or another after having been influenced by other preferences than those related to their concern for equity. These other preferences are discussed briefly below.

2.2. Four types of underlying preferences

When a respondent chooses between a small benefit for the many and a large benefit for the few, this choice may reflect the aggregate of possibly four distinctly

\(^2\) This is analogous to a situation on the value of time-savings, e.g., 10 s saved by each of 600 people may be valued less than 10 min saved by each of 10 people, although the total time-savings are the same.

\(^3\) The approach bears a strong resemblance to work undertaken by Erik Nord, who introduced the person-trade-off (PTO) label to the approach of eliciting implicit social values from comparisons of different increments of health state utilities among hypothetical patients (e.g., Nord, 1992).
different types of preferences, only one of which concerns ‘pure’ equity preferences. This preference for a more equitable distribution implies that the programme benefiting most patients is preferred. The first of the three contaminating effects would accentuate this choice: Positive time preferences suggest that the programme with the shortest duration is preferred, since the present value of the health experienced over the longer time period is reduced by relatively more.

However, if the smaller health gain to each of the many is considered to be too small for each recipient to be able to appreciate it, one may rather choose to concentrate the health gains on some few. There might, in other words, be a minimum threshold quantity that is required before the gains are considered worth to diffuse. If less than this threshold, the programme benefiting least patients would be preferred. While time preferences and equity preferences may have a fairly continuous form, we believe that the threshold effect is more discrete: a given minimum of health gain is required before one’s time and equity preferences take effect. Of course, the threshold quantity does not refer to an absolute value independent of the comparator. It depends on how small the smaller gain \(q \) is relative to the larger gain \(Q \). When relative differences are small equity concerns may dominate in that the differences are considered too small to justify any discrimination between the groups.

A possible additional effect is risk aversion. The welfare gain from insurance is greater when reducing a small probability of a large potential loss than reducing a large probability of a tiny loss. Thus, if respondents also think which programme they would prefer for themselves, and they are risk averse, there is a further argument for expecting them to prefer the programme with the larger effect.

To sum up, according to the health economics literature on equity-efficiency, it is generally assumed that people have non-neutral distributive preferences, and that these point in the egalitarian direction. We have suggested, though, that while two types of preferences point in this direction, there are two other types which point in the reverse direction, i.e., towards concentrating health gains. Therefore, those who reveal distributive neutrality would be at the point where two (normally assumed) positive effects have been exactly out-weighed by two negative effects. And those who reveal a preference for concentration would still be at a point where they consider the threshold effect (and possibly risk aversion) to more than out-weigh their time and equity preferences.

3. From theory to practice

3.1. Alternative formulations of quantities of health

When eliciting distributive preferences, it is crucial that respondents can meaningfully relate to the good which is to be distributed as well as perceive
different magnitudes of this good to deal with different quantities of health, i.e.,
that the units in question have identical physical values. There are essentially four
ways of presenting differences in quantities of health, i.e., the values to be inserted
as \(q \) and \(Q \) in Eq. (3). These are: (1) life years, (2) QALYs, (3) units on a cardinal
health state utility scale, and, (4) years with a given health improvement. Unfortu-
nately, each way of describing differences in health gains have their problems.

3.1.1. Life years

When different quantities of health gains are expressed in terms of differences
in life years gained, respondents are led to believe that the actual groups of people
are of different ages and hence implicitly take account of life stages. There is
increasing evidence that people attach different values to different life stages,
implying that the value of the life years gained would differ.

3.1.2. QALYs

The problem with using QALYs is that respondents would then have to be
given a lengthy introductory explanation of the meaning of this concept, which is
impossible in a self-administered questionnaire.\(^4\) Hence, we are left with express-
ing differences in health gains along one of the two key dimensions of QALYs;
health state increments or durations.

3.1.3. Increments on a cardinal health state utility scale

Not only may respondents have problems in relating to what the values on the
cardinal scale mean in health terms, but they might attach different subjective
utility weights to the identical intervals on the health scale (see also Dolan, 1998).
They might not understand or accept that a health state improvement from, e.g.,
0.3 to 0.6 implies three times as much health as an improvement from 0.3 to 0.4. I
believe respondents more easily accept that 3 years with a given health improve-
ment implies three times as much health as one year with the same improvement.

3.1.4. Years with a given health improvement

While this looks like the best of the four alternatives, still, it has many
problems, some of which are discussed below. It is my experience from a number
of small scale pilot surveys that the important property of respondents perceiving
the units in question to have identical physical values is better secured when using
years with a given health improvement than when using increments on a cardinal
health state utility scale.

In Eqs. (1)–(3), we will define the \(q \) and \(Q \) as representing products of the two
QALY-dimensions duration and health state: \(q = t\Delta HS \) and \(Q = T\Delta HS \) (where \(t \) and \(T \) indicate durations with improved health, and \(\Delta HS \) indicates a given

\(^4\) In interviews or focus groups, it looks like a more possible option.
increment in health state. If we make the assumption that \(v(ΔHS) \) is time independent, then Eq. (3) could be changed to:

\[
v(Pt) = v(pT), \text{ when } t < T \text{ and } P ≥ p. \tag{4}
\]

The issue is that of having respondents choose a value for \(p \), when \(P, t \) and \(T \) are given.

3.2. Empirical testing

A pilot study, which had used \(t = 2 \) and 5 years in each of two samples (both compared with \(T = 20 \)) suggested a weak tendency for more concentrators when \(t = 2 \) (Olsen and Heiberg, 1996). This lead us to believe that a threshold — if it existed — would lie somewhere below this time horizon. In the survey reported from here, we therefore added \(t = 1 \) for a third sub-sample.

The null hypothesis is that the proportion of concentrators relative to diffusors is higher when the small health gain is below a critical value, most likely when \(t = 1 \). The survey also aimed at exploring whether lay persons were capable of responding to choices of this kind in a postal questionnaire.

Respondents were taken through the exercise in two steps (see Appendix). First, there was an ordinal question between two programmes, X and Y, yielding the same total health gains; \(Pt = pT \). There were four options: X (diffusors), Y (concentrators), X or Y are equally good (maximizers), and Don’t know. Subjects who stated a clear preference for either of the two programmes had a second question which asked to circle their indifference value, \(p_1 \), that would make them consider the programmes to be equally good. \(P \) and \(T \) were given the same values in all three samples; 100 persons and 20 years. Again, \(t \) was varied in the samples with values of 1, 2 and 5 years. The listed \(p_1 \)-values included two values less than \(p \), three values between \(p \) and \(P \), and one equal to \(P \). Consistency requires \(p_1 > p \) only for those who had chosen X in the preceding question, and \(p_1 < p \) only for those who had chosen Y.

Two omnibus samples of in total 2089 (which are supposed to be representative of the Norwegian adult population) were asked to take part in a survey which dealt with some issues related to priority setting in health care. 51.5% said they were positive to fill out a questionnaire which would be sent to them. After a reminder, 716 handed in the questionnaire, giving a response rate of 34.3% from the original sample. Table 1 shows the distribution of respondents within each sub-sample \((t = 1, t = 2, t = 5) \) and the total sample (Total). The table also gives the number of respondents who actually filled out the subsequent question on indifference.

5 Admittedly, the assumption that the utility of the health state is independent of its duration is a strong one, but for many practical purposes, it is still acceptable, see, e.g. the recent discussion on QALYs and HYEs in 14 (1) and 16 (5) of this journal.
value (Indifference), and how many of these who answered inconsistently (Inconsistent). Inconsistent were those who gave a $p_i < p$ if having chosen X in the preceding question, or they gave a $p_i > p$ if having chosen Y.

3.2.1. Lowering the t-value

Among those who gave a clear preference for either of the two programmes (diffusors chose X, concentrators chose Y), there was a clear majority within all three samples in favour of a more equal distribution. The proportions of concentrators as compared with diffusors were 0.7 (21%/30%) when $t = 1$, it was 0.37 when $t = 2$, and 0.46 when $t = 5$. When $t = 1$, there were significantly less diffusors and significantly more concentrators as compared with the two samples of $t = 2$ or 5. This leans support to the hypothesis that a threshold value may exist, and that it lies somewhere around $t = 1$ when $T = 20$.

3.2.2. Concentrators appear to be inconsistent

The majority of those who expressed a preference for concentration answered inconsistently. First, only 68% answered the follow-up question of stating their indifference number, and 69% of those who actually answered this question gave an inconsistent answer. In other words, only 21% (27 out of 126) gave consistent answers, whereas 93% among diffusors were able to give consistent answers.

The concentrators found the choice context much more difficult to answer than the other groups of respondents, and it seems that the follow-up question is what caused their problems. First, it was only for diffusors and concentrators to fill out, and secondly — when in doubt — the larger of the listed values appear more attractive. When choosing one of these listed values, the diffusors were consistent, while the concentrators became inconsistent.

6 To a question on whether the issue was difficult, 55% of the concentrators acknowledged this, while the figure was 35% among egalitarians and 38% among the maximizers.
3.2.3. Maximizers don’t know?

Within each sub-sample, the median value of \(p = Pt/T \) implies that the ‘social weight rate’ (Olsen, 1994) is 1, i.e., that there is a constant social value to each additional QALY gained by each person. However, one should be cautious to interpret this to be the finding of the survey. Interestingly, the fraction of respondents who are implied to be maximizers is much the same across sub-samples (37–38%). Bearing in mind the text related to this option in the questionnaire; X or Y are equally good, it might have appeared as a substitute to stating Don’t know among those who did not hold a clear view. Some socio-demographic variables support the idea that respondents may have interpreted the option X or Y are equally good as a ‘no-choice alternative’ to Don’t know. Those who answered Don’t know are more similar to the maximizers than to any of the other groups. When partial comparisons of mean values for the variables gender, education and income gave no significant differences between diffusors vs. concentrators, nor between maximizers vs. Don’t know, the first two groups were collapsed into one (‘the prioritisers’) and compared with the no-choice groups. The \(p \)-values for differences between the collapsed groups were: 0.004 for gender, 0.018 for education, and 0.174 for income. While this may suggest that maximizers in fact do not know, more empirical research is needed on this very important psychometric issue.

4. Conclusions with some lessons

This paper can be seen as an attempt to take the cumbersome route from intuition and theory via methodology to measurement and interpretation. If distributive preferences are to be taken into account in economic evaluations, we need to go beyond the concept of an ‘inequality aversion parameter’. The methodology for measuring distributive preferences for health is still at an infant stage. Dolan (1998) has suggested a social welfare function in which preferences may have a Cobb–Douglas form. Olsen (1994) suggested a method for estimating implicit equity weights based on trade-offs between numbers of persons and numbers of years with improved health. This paper has sought to inquire into some problems with eliciting the numbers that are to be fed into such functions.

The paper has argued that it is not a priori given that respondents would be thinking only along the distributive dimension when facing a trade-off between number of patients and total health gains. Choices may reflect other preferences than what a survey claims to measure. When trying to elicit equity weights, it is important to recognise the inherent difficulties in disentangling the distributive dimension of the stated preferences. Health stretches over time, and as soon as differences in health gains include differences in durations, an element of time preference may be involved. Furthermore, respondents may consider the existence
of a minimum threshold level for health gains, below which, they would rather concentrate the gains on some few, and lastly, they may think about their own probabilities of ending up in the patient groups.

It is hard to know which preferences are predominant. An inquiry into the underlying preferences suggested that time preferences and equity preferences would take respondents in the expected directions. However, if the smaller gain is below the threshold, or they are risk averse, this may take them in the reverse direction, i.e., they may prefer to concentrate the health gains on some few. The study referred to in this paper challenges the conventional wisdom in the literature that there is a universal preference towards a more equal distribution of health gains than the health maximising one. The results indicated that a minimum threshold of benefit may exist (see also Dolan and Cookson, 2000).

The constant proportion of subjects in the three sub-samples who opted for the alternative X or Y are equally good, as well as some socio-demographic similarities with the Don’t know-group suggest that researchers in this field should be cautious to interpret ‘equally good’-options as reflecting well-considered indifference values. More research is needed on the idea that subjects may interpret the equally good-option as a close substitute to stating ‘don’t know’. The most important empirical lesson to learn from the survey reported here is probably that equity-efficiency trade-offs of this kind are cognitively too difficult for postal questionnaires.

Acknowledgements

I am indebted to Paul Dolan for stimulating discussions and his detailed comments on earlier drafts. I would also like to thank Jeff Richardson and two anonymous referees for helpful comments and suggestions. Financial support from the Norwegian Research Council is acknowledged.

Appendix A

The full text as presented to respondent (Version t = 1).

Different durations of health gains

When comparing different health care programmes, one would wish to take into account both the magnitude of people’s total health gains, and how these gains are being distributed between people. The total health gains can be expressed as the number of years with improved health that people get in total.

Imagine two diseases which involve the same misery (reduced functioning and periodical pain), but the misery has different duration. For both diseases there are
treatments which give complete relief. An extra funding involves two options, each of which would yield the same total health gains.

Programme X: 100 persons would have relief for 1 year each.
Programme Y: 5 persons would have relief for 20 years each.

None of the treatments affect the life expectancies. Imagine that you have the same probabilities as everyone else to get the diseases.

On which of the two programmes would you prefer to spend the additional funding?

Put a cross in one of the below alternatives

- [] Programme X
- [] Programme Y
- [] I consider increased funding to X or Y as equally good.
- [] Don’t know

If you answered alternatives 1 or 2:

How many persons do you think would have to get relief for 20 years in order for you to consider it equally good to spend the money on programme Y?

Put a cross in one of the below alternatives

- [] 2
- [] 4
- [] 10
- [] 30
- [] 60
- [] 100

References