Addressing uncertainty in medical cost–effectiveness analysis
Implications of expected utility maximization for methods to perform sensitivity analysis and the use of cost–effectiveness analysis to set priorities for medical research

David Meltzer*
Section of General Internal Medicine, Harris Graduate School of Public Policy Studies, Department of Economics, University of Chicago, 5841 S. Maryland Avenue MC 2007, Chicago, IL 60637, USA
Received 1 April 1999; accepted 29 August 2000

Abstract
This paper examines the objectives for performing sensitivity analysis in medical cost–effectiveness analysis and the implications of expected utility maximization for methods to perform such analyses. The analysis suggests specific approaches for optimal decision making under uncertainty and specifying such decisions for subgroups based on the ratio of expected costs to expected benefits, and for valuing research using value of information calculations. Though ideal value of information calculations may be difficult, certain approaches with less stringent data requirements may bound the value of information. These approaches suggest methods by which the vast cost–effectiveness literature may help inform priorities for medical research. © 2001 Elsevier Science B.V. All rights reserved.

JEL classification: I18; D61; O32

Keywords: Cost–effectiveness analysis; Uncertainty; Sensitivity analysis; Health care research; Value of information; Welfare economics

* Tel.: +1-773-702-0836; fax: +1-773-834-2238.
E-mail address: dmeltzer@medicine.bsd.uchicago.edu (D. Meltzer).
1. Introduction

Despite some recent slowing in the growth of health care costs in the US, health care costs have risen substantially over the past several decades and are likely to continue rising (Smith et al., 1998). This appears to be largely due to the growth of new technology (Fuchs, 1990; Newhouse, 1992). While improvements in health are highly valued (Cutler and Richardson, 1997; Murphy and Topel, 1998), evidence from diverse methodological perspectives suggests that many technologies may have little value at the margin (Eddy, 1990; Brook et al., 1983; McClellan et al., 1994). Cost–effectiveness analysis and other methods for medical technology assessment have arisen to attempt to address this important problem.

One of the main challenges faced by medical cost–effectiveness analysis has been the question of how to perform these analyses in the presence of uncertainty about the benefits and costs of medical interventions. The uncertainty of primary interest in this regard is uncertainty in population level outcomes, although uncertainty in outcomes at the individual level may be present simultaneously. This uncertainty in population level outcomes may result either from limited evidence from clinical trials or the need to extrapolate based on the results of clinical trials using decision analysis and its associated uncertainties in the structure and parameters of decision models. This uncertainty concerning the benefits and costs of medical interventions has motivated much interest in sensitivity analysis within medical cost–effectiveness analysis.

Yet though there have been many proposals about how to address uncertainty in cost–effectiveness analysis, there has been relatively little discussion of the objectives for performing sensitivity analysis. Without a clear understanding of these objectives, it is difficult to know by what criterion to assess the merits of the many alternative approaches to sensitivity analysis. Thus, the lack of clarity concerning the objectives for sensitivity analysis is an important reason for the continuing ambiguity about how to address uncertainty in cost–effectiveness analysis.

This paper attempts to identify the objectives for sensitivity analysis within cost–effectiveness analysis and to develop methods suited to reaching those objectives. The primary objectives of sensitivity analysis are argued to be: (1) to help a decision maker make the best decision in the presence of uncertainty, (2) to identify the sources of uncertainty to guide decisions for individuals or subgroups with characteristics that differ from a base case, and (3) to set priorities for the collection of additional information. This paper studies these problems by examining the implications of an expected utility maximization model for the optimal choice of medical interventions when there is uncertainty about the costs and benefits of those interventions. The results indicate that if the objective is to maximize expected utility given available information — as is implicit, for example, in the maximization of quality-adjusted life expectancy — and if financial risk is effectively diversified through either public or private insurance, then the optimal decision is determined by the ratio of the expected cost divided by the expected benefit. Other assumptions about preferences or insurance will yield other conclusions about how to account for uncertainty (Mullahy, 1997), but also would require different models for cost–effectiveness in the absence of uncertainty at the population level. These findings also have implications for sensitivity analyses done for other purposes. If the objective of sensitivity analysis is to guide decisions for subgroups that differ from the base case, then the ratio of expected
costs to expected benefits for that subgroup is the appropriate criterion. If the objective of sensitivity analysis is to set priorities for the acquisition of additional information, then the incremental increase in expected utility with additional information is the appropriate measure of benefit. Though such ideal value of information calculations may be difficult to perform, other approaches to sensitivity analysis with less stringent data requirements may provide bounds on the value of information. Together, these approaches suggest a theoretically grounded approach by which the tools of medical cost–effectiveness analysis can be used to help set priorities for medical research. Following these approaches, it may be possible to draw upon the vast literature on the cost–effectiveness of specific medical interventions (Elixhauser et al., 1998) to address crucial needs for more systematic ways to set priorities for medical research. After active discussion between Congress, the Administration, and the leadership of the National Institutes of Health (NIH) over the value of and priorities for Federal funding of biomedical research, the need for such systematic approaches to identify priorities for research at the NIH was recently highlighted in a report of the Institute of Medicine (IOM, 1998).

Section 2 discusses the objectives of sensitivity analysis. Section 3 discusses the primary methods currently used to perform sensitivity analysis. Section 4 uses an expected utility maximization model to derive methods for optimal decision making in the context of uncertainty about population outcomes. Section 5 extends the basic results of Section 4 to encompass uncertainty at the individual level. Section 6 uses the model to derive methods for sensitivity analysis to guide decisions for individuals or subgroups that differ from a base case. Section 7 applies these principles to a stylized decision concerning a medical treatment of uncertain benefit. Section 8 uses the model to derive methods to use sensitivity analyses to inform priorities for the collection of additional information to guide decision making, including approaches to bound value of information calculations with limited information. Section 9 applies these ideas to a stylized model of the decision whether to treat prostate cancer and discusses some challenges in implementing these approaches to set priorities for research. Section 10 concludes.

2. Objectives for sensitivity analysis

In order to begin to assess methods to account for uncertainty in cost–effectiveness analysis, it is essential to consider the objectives in performing sensitivity analyses. Although not all of these objectives may be relevant in every application, the objectives appear to fall into three broad categories: (1) to help a decision maker make the best decision in the presence of uncertainty about costs and effectiveness, (2) to identify the sources of uncertainty to guide decisions for individuals or groups with characteristics that differ from a base case, and (3) to set priorities for the collection of additional information.

2.1. Decision making under uncertainty about cost and effectiveness

This is probably the most common reason that sensitivity analysis is performed in medical cost–effectiveness analysis, and arises because the scientific literature often does not provide precise information concerning effectiveness or costs. For example, the efficacy of an immunization or the frequency and cost of complications may not be known with
confidence. Nevertheless, patients must decide whether they want the immunization and public and private insurers must decide whether they will cover it. Thus, having a mechanism to help guide decision making when the costs and benefits of a medical intervention are uncertain is important.

2.2. Decision making for individuals or subgroups that differ from a base case

Though not frequently stated as a motivation for sensitivity analysis, developing insight into decisions faced by individuals or subgroups is also a common motivation for performing sensitivity analysis in medical cost–effectiveness analysis. For example, a cost–effectiveness analysis for immunization of a population would likely consider the average risk of acquiring an infection in the absence of immunization. However, an analyst examining the cost–effectiveness of immunization for an individual or group with a known risk factor for acquiring some infection would want to reflect that higher-than-average risk.

2.3. Priority-setting for the collection of additional information

When the conclusions of a cost–effectiveness analysis are altered by parameter values that cannot be ruled out based on the literature, the collection of additional information concerning those parameters may be justified. Though in practice it is not frequently done, sensitivity analysis can be used to identify parameters that may change the results of a decision analysis and those parameters may then be studied more intensively. A few studies have used this approach to determine the value of sample size for clinical trials (Claxton and Posnett, 1996; Hornberger, 1998), or to perform sensitivity analysis in a decision model by calculating the expected value of perfect information concerning specific parameters of the model (Felli and Hazen, 1998).

Although these three motivations for performing sensitivity analysis are clearly distinct, papers in the literature commonly do not distinguish among them in their discussion of the sensitivity analysis. This is important because different methods for sensitivity analysis may be better suited to different objectives. This is discussed further below.

3. Methods for sensitivity analysis

Before attempting to derive methods for performing sensitivity analysis, it is useful to discuss the existing methods. The oldest and most commonly used forms of sensitivity analysis are univariate sensitivity analyses. Following these approaches, analysts begin with the mean or modal values of all the probabilities in their analysis and use those to calculate the costs and benefits for a “base case” analysis. The parameters are then varied individually across a range of possible outcomes to see how the cost–effectiveness of an intervention changes. In some instances, the parameter values are varied over the range of all possible values, while in other cases they are varied across confidence intervals that are drawn from the medical literature.

A major advantage of one-way sensitivity analyses is that they permit the analyst to identify the effects of individual parameters on the analysis. Another advantage of one-way sensitivity analyses is that the results can be easily calculated and reported. However, there
are also a number of significant shortcomings of these approaches. First, they do not clearly
delineate either what range of parameter values to consider or what to do when some of those
possible parameter values would change the optimal decision. For example, consider again
the case of a vaccination. Its probability of providing immunity is logically constrained
to a number between 0 and 1. High and low estimates in the literature might be 0.98 and
0.60. The best study might predict a protection rate of 0.92 with a 95% confidence interval
of 0.89–0.96. Which of these are we to choose in setting the range of parameters? If we
choose the broadest range, it may be impossible to pin down the costs and benefits with
sufficient precision to determine whether the intervention is worthwhile. If we use a 95%
confidence interval and find a benefit throughout the range, the potential for an immense
harm that could occur if the true value of the parameter falls outside that range would fail to
be recognized. Even if we find that the optimal decision changes for a parameter value at the
upper end of the 95% confidence interval, it is not clear how that should change the decision
we should make. If the welfare benefits over the majority of the interval are large, and any
welfare loss at an extreme of the confidence interval is modest, it is not clear that the negative
result at the extreme should have much influence on the decision made. Threshold analyses
— which identify the parameter values at which an analysis crosses a cost–effectiveness
threshold — are subject to the same criticism for failing to reflect the magnitude of the
effect of the parameter on costs and outcomes and therefore the significance of the fact that
the cost–effectiveness ratio crosses some threshold for some parameter values.

Another concern with one-way sensitivity analyses is that they may be misleading if
the results obtained by varying a parameter depend on the level of other parameters in the
model. This has motivated multi-way sensitivity analyses in which parameters are varied
simultaneously across plausible or likely ranges. These analyses are subject to all the con-
cerns described above concerning one-way sensitivity analyses, as well as some additional
problems. One problem with these approaches is that the number of sensitivity analyses
that must be performed rises exponentially with the number of parameters. Another prob-
lem is that assumptions about one parameter often have implications for assumptions about
other parameters. For example, assumptions about the natural history of untreated disease
may have implications for the history of disease under treatment. This has motivated ef-
forts to examine the joint distribution of the parameters in a model. This approach, along
with a similar population-based sampling approach to estimating costs, effectiveness and
cost–effectiveness ratios, sometimes termed stochastic cost–effectiveness analysis, appears
to be receiving increasing attention in the field (O’Brien et al., 1994; Gold et al., 1996;
Polsky et al., 1997). However, these analyses still do not address the question of the optimal
decision in the presence of uncertainty because they do not suggest what to do when the set
of possible costs and outcomes include ones that would make the cost–effectiveness ratio
fail to meet the chosen threshold for cost–effectiveness.

Furthermore, there are a set of issues related to the calculation of cost–effectiveness ra-
tios as ratios, and the relationship between those ratios and resource allocation. The ratio
issue is important because benefits and costs will usually not be distributed independently
since changes in parameter values will often influence both simultaneously and because
ratios and their expectations are undefined when the benefits are, or may be, zero. Like-
wise, cost–effectiveness ratios may have very different meanings depending on the signs
of costs and benefits so that merely calculating averages or even confidence intervals for
cost–effectiveness ratios would not generally be meaningful (Stinnett and Paltiel, 1997). One creative approach to these issues is to reformulate cost–effectiveness analyses in terms of Net Health Benefits (Stinnett and Mullahy, 1998), in which both costs and benefits are expressed in the common denominator of years of life saved. While free of some of the complications associated with estimating cost–effectiveness ratios, the utility of the Net Health Benefit approach is diminished by the fact it does not allow easy comparisons with results from traditional cost–effectiveness analyses that rely on cost–effectiveness ratios, and is dependent on assumptions about the valuation of improvements in health. A related approach with similar concerns is to convert health benefits into a monetary value, as is done in cost–benefit analysis (Tambour et al., 1998).

In assessing these methods, it is interesting to note that while all of them appear to have some significance for the objectives described above, none of them are explicitly linked to those objectives. As discussed above, this lack of clarity concerning the objectives for sensitivity analysis is an important reason for the continuing ambiguity concerning methods to account for uncertainty in medical cost–effectiveness analysis. The next two sections use an expected utility maximization model to attempt to develop an approach to assess the importance of uncertainty about parameter values in order to make an optimal decision under uncertainty. The sections that follow then examine the adaptation of that approach to address the other two common objectives of sensitivity analysis — the determination of cost–effectiveness for individuals or subgroups and the identification of areas where the collection of additional information would be of value.

4. A deterministic model of health outcomes with uncertainty about effectiveness

In this simple case, we assume that there is uncertainty about the effectiveness \(\theta \in \Theta \), with pdf \(p(\theta) \) of providing \(m \) units of medical care (for example, blood pressure checks per year), but that the outcome of that medical care given \(\theta \) is certain. By making this assumption, we abstract from the problem of uncertainty in outcome for an individual, and focus instead on uncertainty for a “representative consumer” assumed to be identical to all other individuals, so that there is no heterogeneity in the population. We return to these issues of individual level uncertainty and heterogeneity in Sections 5 and 6, however.

To capture the possibility that effectiveness may affect both the costs and benefits of an intervention, we allow both utility \(U \) and the costs of the medical care \(c \) to depend directly on \(\theta \) so \(c = c(m, \theta) \). This allows the cost of \(m \) units of medical care to be uncertain, as it might be, for example, if it is not known how much those blood pressure checks and resulting treatments would cost. In addition, utility is assumed to depend on non-medical consumption \(x \) and medical expenditure, so \(U = U(m, \theta, x(\theta)) \). Here \(x \) is written as \(x(\theta) \) to denote the fact that \(x \) will vary with \(\theta \) for any \(m \) to satisfy the budget constraint \(c(m, \theta) + x(\theta) - I = 0 \) for each level of effectiveness. To model cost–effectiveness, we assume that people maximize expected utility \(^1\) and take the example of a representative

\(^1\) While individual preferences may in fact be inconsistent with expected utility maximization, QALYs implicitly assume that people maximize expected utility. While relaxing this assumption might be desirable, doing so would therefore involve a substantial reformulation of the way in which health benefits are assessed even in the absence of uncertainty. This is discussed further in Section 10.
consumer who maximizes expected utility subject to budget constraint conditional on each level of effectiveness:

$$\max_m \int p(\theta) U(m, \theta, x(\theta)) d\theta \text{ such that } c(m, \theta) + x(\theta) - I = 0 \text{ for all } \theta. \quad (1)$$

Rewriting this as a Lagrange multiplier problem with $\lambda(\theta)$ as the multiplier for the budget constraint at each level of θ, and multiplying each $\lambda(\theta)$ by $p(\theta)$ without loss of generality yields

$$\max_{m, \lambda(\theta)} \int p(\theta) U(m, \theta, x(\theta)) d\theta + \int \lambda(\theta) p(\theta) [I - c(m, \theta) - x(\theta)] d\theta. \quad (2)$$

This generates a first-order condition for medical expenditure which is

$$\int p(\theta) \frac{\partial U(m, \theta, x(\theta))}{\partial m} d\theta + \int \lambda(\theta) p(\theta) \frac{\partial c(m, \theta)}{\partial m} d\theta = 0. \quad (3)$$

This implies that investment in a medical intervention should occur to the point at which its expected marginal benefit (utility) equals the expected value of the marginal-utility-of-income-weighted marginal cost. Allowing the marginal utility of income to depend on θ reflects the possibility that, either because of changes in the utility function or costs with θ, income might have a greater or lesser marginal utility.

For an individual, these effects of uncertainty about the costs and effectiveness of medical interventions on the marginal utility of income are clearly plausible and potentially important. If someone has hip replacement for arthritis at age 55 and then suffers a severe complication, is forced into early retirement, and requires around-the-clock care, both their utility and medical costs will be directly affected and their marginal utility of income could change substantially. In a population, however, such effects are far less compelling because insurance can equate the marginal utility of income across health states unless an intervention leads to an extraordinarily large change in either population health or costs. Thinking from a population perspective in which most extremely expensive medical interventions affect a relatively small number of persons and most common medical interventions are relatively modest in cost, it is much less likely that the (aggregate) marginal utility of income will change substantially with uncertainty about the costs or benefits of a single intervention.² If this is the case, then $\lim \lambda(\theta) \to \lambda$ and the first-order condition for medical expenditures converges to

$$\int p(\theta) \frac{\partial U(m, \theta, x(\theta))}{\partial m} d\theta + \int \lambda(\theta) p(\theta) \frac{\partial c(m, \theta)}{\partial m} d\theta = 0, \quad (4)$$

which implies that the cost–effectiveness ratio is

$$\frac{\int p(\theta) \frac{\partial c(m, \theta)}{\partial m} d\theta}{\int p(\theta) \frac{\partial U(m, \theta, x(\theta))}{\partial m} d\theta} = \frac{1}{\lambda}. \quad (5)$$

² Note that even if changes in health status led to substantial changes in income or the need for non-medical assistance holding income constant across individuals in different health states, optimal insurance could still equate the marginal utility of income across states. In practice, of course, insurance will often fall short of this ideal, but this is nevertheless a useful point of reference. Departures from perfect insurance are discussed further in Section 10.
Thus, expected utility maximization implies that the optimum cost–effectiveness ratio of an intervention in a population under uncertainty is closely approximated by the ratio of expected costs to expected benefits. Note that this “ratio of means” solution is analogous to that suggested by Stinnett and Paltiel (1997) as the solution to a constrained optimization problem in a linear programming context and by Claxton (1999) in a Bayesian discrete choice decision theoretic context. However, neither analysis derives the result directly from a formal utility maximization model nor addresses the possible dependency of the marginal utility of income on θ.

While this argument about the dependence of the marginal utility of income on θ has not been made previously in the context of medical cost–effectiveness analysis, it should be noted that the argument is quite similar to that made by Arrow and Lind (1970) concerning the evaluation of risk in public investment decisions. There the authors argue that the large scale of the public sector allows it to effectively eliminate any welfare loss associated with the riskiness of investments by spreading the risk across a sufficiently large population. The argument here relies both on this diversification effect and the relatively modest magnitude of almost any one public health care decision in the context of overall health and health expenditures.

5. A stochastic population model with individual-level uncertainty about outcomes

Unlike in the deterministic model presented above, medical interventions almost always have uncertain outcomes for individuals even when there is no population-level heterogeneity so that all individuals share a common set of parameters (θ). Thus, for a set of individuals indexed by $j \in J$ who might each experience health outcome $\varepsilon_j \in E$, the probability of experiencing outcome ε_j given $\varepsilon \in \Theta$ can be written as $f(\varepsilon_j|\theta)$ and expected utility can be written as

$$
\int p(\theta) \left(\int f(\varepsilon_j|\theta)U_j(m, \varepsilon_j, x_j(\varepsilon_j, \theta)) \, d\varepsilon_j \right) \, d\theta \quad \text{such that}
$$

$$
c_j(m, \varepsilon_j, \theta) + x_j(\varepsilon_j, \theta) - I = 0 \quad \text{for all } \theta, j, \varepsilon_j.
$$

Following the lines of the argument above, we can construct state-specific Lagrange multipliers $\lambda_j(\varepsilon_j, \theta)$ and note that if there is (1) a large population so that aggregate risk given θ is negligible, (2) full insurance, and (3) uncertainty in the effectiveness of the intervention has limited consequences in the sense that θ does not have much effect on λ as described above, then

$$
\lim_{\varepsilon_j \to \bar{\varepsilon}} \lambda_j(\bar{\varepsilon}, \theta) \to \lambda(\bar{\varepsilon}, \theta) \to \lambda \quad \text{for all } \bar{\varepsilon} \equiv \{\varepsilon_1, \ldots, \varepsilon_j, \ldots, \varepsilon_J\}, \text{ where}
$$

$$
\varepsilon_j \in E \quad \text{and for all } \theta.
$$

Thus, cost–effectiveness can be identified by the ratio of expected costs to benefits even in the presence of uncertainty at the individual level.
6. Sensitivity analysis to guide individual or subgroup decisions

When sensitivity analysis is done to guide decisions for individuals or subgroups, the problem is essentially the same as for the total population, except that the parameter vector \(\theta \) has a different probability distribution \(p'(\theta) \) than in the overall population. This may occur if parameters for those individuals or subgroups are thought to differ from those for the population as a whole. This is the type of heterogeneity that most frequently motivates subgroup analyses in cost–effectiveness analysis. However, subgroup analysis may also be desirable if the values of the parameters for a subgroup are not known to differ from those in the population as a whole, but the subpopulation is more or less well studied. In both cases, the analysis differs only in the probability distribution for the parameters, with cases in which some parameters for subgroups are known with certainty addressed by a simplification of the analysis in which the marginal density for the known parameters is degenerate because there is no uncertainty about them.\(^3\) Accordingly, the solution to this problem for individuals or subgroups is again the ratio of the expected value of costs to the expected value of benefits, only using the appropriate prior probability distribution for the subgroup or individual.

7. Application to a stylized decision concerning a treatment of uncertain benefit

Fig. 1 describes a stylized decision concerning an intervention of uncertain benefit. For simplicity, the intervention is assumed to cost US$ 10,000 with certainty. Uncertainty is assumed to exist only with respect to benefits; it is assumed that there is a 90% chance

\(^3\) To illustrate: let Groups A and B have pdfs \(p^A(\theta) \) and \(p^B(\theta) \). Now assume that this heterogeneity can be fully parameterized and partitioned into a certain part \(\theta_C \) and an uncertain part \(\theta_U \) so that these pdfs can be fully parameterized as \(p^A(\theta) = p(\theta_C^A; \theta_U^A) \) and \(p^B(\theta) = p(\theta_C^B; \theta_U^B) \). In this case, the differences in the certain parameters \(\theta_C \), can be viewed as representing observable heterogeneity, while the uncertainty over the uncertain parameters described by the pdfs describes the uncertainty with respect to which decisions need be made (i.e. integrated over \(\theta_U \)). Thus, this framework incorporates observable heterogeneity as a special case.
that the benefit is 0.1 life year, but also a 5% chance each that the benefit is 0.01 or 1 life year.

Taking these three possibilities individually, the cost–effectiveness ratios are US$100,000, 1,000,000, or 10,000, respectively. If one used a cutoff of US$100,000 per life year, a traditional sensitivity analysis would therefore be indeterminate. Indeed, such indeterminacy is extremely common in cost–effectiveness analyses. Another limitation of this standard approach is that, while the cost–effectiveness ratios tell us something about the magnitude of benefits relative to costs, they do not provide any indication of how to incorporate the likelihood of those benefits. Common approaches to sensitivity analysis might take other perspectives. For example, the stochastic cost–effectiveness approach might conclude that since there is only a 5% chance that the intervention is not cost-effective, it should be selected. On the other hand, the same approach could be used to argue that since there is only a 5% chance that the intervention will provide a benefit in excess of its cost, it should not be selected. The problem with these perspectives is that they do not reflect the magnitude of potential benefits relative to costs.

Following the expected utility approach described above, the expected cost is US$10,000 and the expected benefit is:

\[
0.05 \times 0.01 + 0.9 \times 0.1 + 0.05 \times 1.0 = 0.0005 + 0.09 + 0.05 = 0.1405 \text{ life years.}
\]

Thus, the cost–effectiveness ratio is US$10,000 per 0.1405 life years is equivalent to US$71,174 per life year saved, which is clearly cost-effective by the US$100,000 per life year standard. Even though the chance that the intervention is highly beneficial is only 5%, more than one-third (0.05/0.1405 = 36%) of the expected benefit comes from the unlikely event that it is highly effective. It is this ability to incorporate both the magnitude and likelihood of benefits and costs into a single statistic that can be used to guide decision making that is the primary advantage of the expected value approach over the traditional approaches that incorporate only one or the other dimension, and often result in indeterminate conclusions that do not provide much guidance for decision making.

8. Sensitivity analysis to guide information collection

In addition to providing guidance about how to identify the optimal decision under uncertainty given available information, the expected utility approach can be used to inform priorities for research by assessing whether the collection of additional information is likely to be worthwhile. When a study is done to accumulate improved information concerning parameters in a decision model, the value of information is the change in expected utility that comes from a change in uncertainty about the parameters. Although this fundamental principle dates back at least to the pioneers of statistical decision theory (e.g. Raiffa and Schlaifer, 1961; Pratt et al., 1965), and has been used to understand the value of diagnostic testing in medicine (Phelps and Mushlin, 1988), it has not been commonly used to develop techniques for sensitivity analysis in medical decision analysis. Indeed, when formal techniques for clinical trial design have been applied (e.g. O’Brien et al., 1994; Al et al., 1998; Briggs and Gray, 1998), they have often been based on criteria for decision making such as confidence intervals around the cost–effectiveness ratio, which generate suboptimal results for the same reasons that the threshold approaches to sensitivity analysis may be misleading.
Two exceptions to this are Claxton and Posnett (1996) and Hornberger (1998), which focus on the determination of optimal sample size for a clinical trial from a cost–effectiveness perspective in a full Bayesian context.

Adopting the expected utility approach, assume that for any information set describing the parameter distribution, \(p(\theta) \), there is an optimal choice of \(m \) as described above. Call this \(m^*(p(\theta)) \). This implies an expected utility with existing information (EU_0) of

\[
\int p(\theta)U(m^*(p(\theta)), \theta, x(\theta)) \, d\theta.
\]

Now imagine that we are able to acquire additional information about \(\theta \). Assume further that the cost of this research is \(c_r \). Though the analysis is easily generalized to permit an infinite number of possible outcomes of the experiment, assume for simplicity that there are only two possible outcomes of this experiment: with probability \(q \) that the distribution of \(\theta \) is found to be \(p'(\theta) \) and with probability \((1 - q) \) that it is found to be \(p''(\theta) \), where, for consistency with the initial prior distribution, \(q^* p'(\theta) + (1 - q)^* p''(\theta) = p(\theta) \). In these cases, the optimal level of medical expenditure will be \(m^*(p'(\theta)) \) and \(m^*(p''(\theta)) \) and the expected level of utility is

\[
q \int p'(\theta)U(m^*(p'(\theta)), \theta, x'(\theta)) \, d\theta + (1 - q) \\
\int p''(\theta)U(m^*(p''(\theta)), \theta, x''(\theta)) \, d\theta,
\]

where \(x'(\theta) \) and \(x''(\theta) \) are determined from the budget constraint net of research costs \(c_r \) (i.e. \(c(m, \theta) + x(\theta) + c_r - I = 0 \) for all \(\theta \)). It follows that the change in expected utility with the collection of information, or expected value of information (EVI) is

\[
q \int p'(\theta)U(m^*(p'(\theta)), \theta, x'(\theta)) \, d\theta + (1 - q) \\
\int p''(\theta)U(m^*(p''(\theta)), \theta, x''(\theta)) \, d\theta - EU_0.
\]

\[\text{(10)}\]

4 In the general case, we wish to compare the expected utility resulting from the optimal decision \(m^* \) given the original budget constraint in the absence of information to the expected utility resulting from the optimal decision in the presence of the new information subject to a budget constraint that includes the cost of collecting information (\(c_r \)). Thus, we compare the expected utility resulting from the solution to

\[
\max_{m, \lambda(\theta)} \int p(\theta)U(m, \theta, x(\theta)) \, d\theta + \int \lambda(\theta)p(\theta)[c(m, \theta) + x(\theta) - I] \, d\theta
\]

to the expected utility of the solutions to the optimal decision problems for the \(j \) possible outcomes of the experiment as individually given by

\[
\max_{m, \lambda(\theta)} \int p_j(\theta)U(m, \theta, x(\theta)) \, d\theta + \int \lambda(\theta)p_j(\theta)[c(m, \theta) + x(\theta) + c_r - I] \, d\theta,
\]

where \(\int_{\theta \in \Omega} p_j(\theta) \, d\theta = p(\theta) \).
If this is positive then the study is worth performing, if not, then it should not be performed.

Although this value of information calculation is easily described in theoretical terms, implementing this approach requires meaningful information on the prior probabilities of the parameters required for the calculation, and this may be very difficult to obtain. In some instances, priors may be estimated based on published estimates of means and confidence intervals or other data from the literature. In other instances, primary data collection may be required. Still, it is likely that in a significant number of cases it will not be possible to identify much information that will inform priors. Moreover, it may be quite difficult to say much about how an experiment is likely to affect the posterior distributions of the parameters.

These empirical challenges suggest that techniques for assessing the value of information that do not rely on this data concerning prior or posterior distributions would be highly useful. Table 1 summarizes a number of such approaches and their informational requirements. In the case where information on priors is available, one such possibility is the expected value of perfect information: $EVPI = m^*(p^0(\theta)) - EU_0$, where $m^*(\theta)$ is the optimal choice of m if θ is known. Since the expected value of information is always positive, this provides an upper bound on the ideal value of information calculations described above.

To see this, note that if research cost are zero, the fact that $m^*(p^0(\theta))$ and $m^*(p^0(\theta))$ are optima implies that the first two terms in the equation are greater than

$$q \int p^0(\theta)U(m^*(p^0(\theta)), \theta, x(\theta)) \, d\theta + (1 - q) \int p^0(\theta)U(m^*(p(\theta)), \theta, x(\theta)) \, d\theta$$

$$= \int p(\theta)U(m^*(p(\theta)), \theta, x(\theta)) \, d\theta,$$

which is the expected utility from the optimal expenditure in the absence of information. This implies that the expected value of free information is positive. For completeness, it should be noted that this result applies only to public information, since the value of private information might not be positive (Rothschild and Stiglitz, 1976).
From a practical point, however, the advantage of the EVPI calculation is that it does not depend on the posteriors. Indeed, this is probably one reason why the EVPI approach has been used in the cost–effectiveness literature (e.g. Felli and Hazen, 1998). Although EVPI is simpler to determine than EVI, it still depends on knowledge of the priors. An alternative measure that did not depend on this might also be useful. One such measure is the maximal value of information (MVI) over all possible values of $\theta \in \Theta$, $\text{MVB}_D = \max_{\theta \in \Theta} U(m^*(\theta))$. Although this will also only be an upper bound on EVPI and, therefore, EVI, it depends only on knowing the value function conditional on θ. Although it may be a relatively crude upper bound, it is worth noting that this criterion in fact corresponds to that implied by a threshold analysis in which the bounds are determined by the extreme values of the parameter (assuming, as is usually done, that the value function is monotonic with respect to the parameters). Thus, applying the threshold technique based on the full range of possible values of a parameter can be considered a bound on the more general value of information calculation, only with less rigorous information requirements. Thus, like EVPI, the threshold approach based on the full range of values a parameter might take can be considered a method to place an upper bound on the more complex EVI calculation. When these calculations suggest that the MVI or EVPI is low, the full EVI calculation is not necessary. Note, in contrast, that the common practices of assessing cost–effectiveness at a 95% confidence interval for a parameter or calculating stochastic cost–effectiveness intervals have no clear theoretical justification.

Thinking more broadly, if Θ is enlarged to include any conceivable value of θ, even if the value is not possible with current technology, this type of reasoning can be extended to consider any possible research on the parameter in question. For example, if the probability of cure with the best current treatment for a disease is known to be between 20 and 40% with certainty and the treatment is found not to be worthwhile (perhaps because of morbidity), one could calculate whether treatment would be worthwhile if the cure rate were 100%. This might be called the maximum value of research (MVR), and, in turn, can be used to generate an upper bound on MVI that does not require any data at all concerning the parameter in question. The MVR concept could also be expanded to consider innovations that led to fundamental changes in the structure of the decision tree, and not just the effects of changes in its parameters.

6 It should be noted, however, that Felli and Hazen (1998) consider the EVPI relative to the expected value of an optimal decision that they specify as one that maximizes the expected payoff given parameter values that the investigator feels are “most likely to obtain” (p. 100). This seems to suggest the modal value(s) of the parameter(s). Nevertheless, in their applications they tend to choose the mean values of their parameters. Regardless, since neither of these are generally the optimal decision given available information, this calculation will overstate the EVPI relative to the EVPI given an optimal decision with available information. In this sense, Hazen and Felli’s calculations can be viewed as an upper bound on the true EVPI. The only advantage of this approach over the theoretically correct approach is that it avoids the need to determine the optimal decision with existing information. This is not a substantial advantage, however, because, if the value of information is small, collecting further information is presumably not worthwhile and therefore knowing the optimal decision with existing information is key. Similarly, if the value of information is large, then one still wants to try to determine the EVPI relative to an optimal decision with existing information to see how much that decreases the bound on the EVPI. Thus, in either case, calculating EVPI relative to the optimal decision given current information is preferred. It is also generally not an extremely difficult determination to make once the ability to assess the expected value of outcomes from an arbitrary (optimal or suboptimal) decision is present.
9. Application to a stylized model of the decision whether to treat prostate cancer

In order to illustrate these approaches, this section examines a simplified model of the decision to treat prostate cancer. A highly stylized model is chosen to focus attention on the methods rather than the specific application. In this simplified model (Fig. 2), the decision to treat prostate cancer is viewed as a choice between radical prostatectomy (surgical removal of the prostate) and “watchful waiting” (no intervention unless the cancer is found to spread). This decision is represented by the two decision nodes in the middle of Fig. 2. In this simplified model, radical prostatectomy is assumed to be curative, so that the patient lives out a “normal” life of 25 years. However, radical prostatectomy is assumed to have a 5% mortality rate. The outcome of watchful waiting depends on how quickly the cancer progresses. Many cancers will progress slowly enough that men die of other causes before they die of prostate cancer and thus live a normal life of 25 years. Other men will progress rapidly and are assumed to die of prostate cancer at 10 years. For simplicity, we assume that quality of life is not a concern so that outcomes are measured in life years, which are the same as quality-adjusted life years. Radical prostatectomy is assumed to cost US$ 10,000 and the basic future costs of survival are assumed to be US$ 20,000 per year. (See Meltzer (1997) for a justification for including costs of this nature.)

However, the natural history of prostate cancer is not as well understood as suggested by these assumptions. In fact there is much uncertainty even about average rates of progression to death from prostate cancer, i.e. how aggressive the disease is on average. This is the dimension of uncertainty on which we focus in this example. This is captured in a stylized way in Fig. 2 by the upper and lower decision trees that differ in the fraction of tumors that are assumed to progress rapidly (0.085 in the “non-aggressive” case, and 0.2 in the “aggressive” case).

Fig. 2. Simplified cost–effectiveness model for screening for prostate cancer with uncertainty about progression rates (cost (US$)/effectiveness (life years)).
Panels 1 and 2 of Table 1 show the results of a cost–effectiveness analysis of the treatment decision in the non-aggressive and aggressive cases. In both cases, treatment provides a benefit, but in the first case it is a small benefit with a cost per QALY of US$ 420,000 and in the second case it is a much larger benefit with a cost per QALY of only US$ 26,000. If we assume for simplicity that the cutoff for cost–effectiveness is US$ 100,000 per QALY, then the optimal decision in the first case would be watchful waiting, while in the second it would be treatment.

The left most part of the decision tree reflects the fact that we do not know which of these possibilities is the case and places some prior probabilities on the two arms (0.2 aggressive, 0.8 non-aggressive). Panel 3 of Table 1 reports the expected benefits and costs of the screening decision with these priors. In that case, the ratio of the expected costs to expected benefits is US$ 47,000, which is cost-effective by the US$ 100,000/QALY standard. This might seem surprising because of the 80% chance that progression was not aggressive, and treatment is not even close to cost-effective by the US$ 100,000/QALY standard in that case. The result is driven by the 20% chance that the benefit could be much larger, even though that possibility is not very likely. This points out the potential for the ratio of the expected value approach to generate different results than the standard probabilistic approaches based on thresholds for defining cost–effectiveness that do not account fully for both the magnitude and likelihood of the potential benefits.

We now turn to the question of whether the collection of additional information would be of value. Following the approach described above, we begin by calculating the maximum value of information. This calculation can be done in several ways requiring progressively more information. To take an extreme example, assume that we knew nothing about the probability that prostate cancer is aggressive, but only the life expectancy of patients with aggressive cancers who are treated or not treated, and the price of prostatectomy. In the absence of knowledge about the probability that cancers would progress rapidly, there is no clear guidance about whether watchful waiting or prostatectomy dominates, so we consider both cases as reference cases. Assume first that no treatment is the reference point. To get an upper bound on the value of information, one could use only information on the life expectancy of treated and untreated patients and assume that all patients have aggressive cancers. Specifically, assuming that men who have prostate cancer but are not treated live 10 years (QALYs), while men who are treated live 25 years (QALYs), the value of treatment would be 15 QALYs × US$ 100,000/QALY = US$ 1.5 million per patient. Alternatively, we could assume that that treatment is the reference case, so that the benefit of determining that treatment was not cost-effective would be the cost savings from avoiding prostatectomy (US$ 10,000) and avoidance of treatment-related mortality (0.05 mortality × 25 QALYs × US$ 100,000/QALY = US$ 125,000) net of any benefits of treatment, which add to no more than US$ 135,000 per patient.

To use these estimates of the maximum value of information for a patient to assess whether investment in a study to resolve the ambiguity about the aggressiveness of prostate cancer would be worthwhile, one might multiply these numbers by the number of men who are found to have prostate cancer annually (100,000) and divide by some real interest rate (0.03) to reflect the discounted value of the value of that information over time to get the maximum value of information (MVI): US$ 1.5 million × 100,000/0.03 = US$ 5 trillion
if the baseline strategy is watchful waiting and US$ 0.135 million × 100,000/0.03 = US$ 450 billion if the baseline strategy is prostatectomy. These extremely large estimates of the maximum value of information suggest the potential for information of immense value to come from knowledge about the efficacy of prostate cancer treatment, and exceed the cost of any conceivable clinical trial.

Of course these MVI calculations are an upper bound, and a fair interpretation of these findings is that the MVI is simply not informative in this case, despite its analytical simplicity and independence of assumptions about the fraction of cancers that are aggressive. This suggests that it is worthwhile to pursue the expected value of perfect information (EVPI) approach.

The EVPI approach is described in panel 4 of the table. The panel describes the expected value of three strategies: watchful waiting, radical prostatectomy, and the optimal decision with perfect knowledge of the average progression rate (EVPI). The last two columns report the value of the change in QALYs (assuming US$ 100,000/QALY for illustration) and the net incremental benefit of the policy choice compared to the strategy immediately above it in Table 2.

The first point to note is that if one made policy based on the most likely cost–effectiveness ratio (US$ 420,000), one would choose watchful waiting, but if one chose based on the ratio of the expected values, one would choose radical prostatectomy, which yields a net benefit of US$ 19,600 (US$ 26,000 − 6400) per patient relative to watchful waiting. This is a quantified measure of the expected gain from the improvement in decision making by using the mean of the expected values as opposed to basing the decision on the most likely cost–effectiveness ratio, as is generally done in the “base case” reported by most current cost–effectiveness analyses.

The second point to note is that the expected value of the gain versus watchful waiting with improved information is even higher at US$ 26,000 per patient. This implies an additional gain of US$ 6400 per patient of the improved information compared to the best possible decision with the initial information. Converting this patient level estimate of the value of research into a population level estimate as above suggests an EVPI of US$ 6400 × 100,000/0.03 = US$ 21 billion. As with the MVI, this large EVPI suggests that the value of information about the efficacy of prostate cancer treatment might far exceed the cost of almost any conceivable clinical trial.

Of course this too is an upper bound on the expected value of information from any actual clinical trial, since any trial is likely to provide less than perfect information. Panel 5 examines one such case in which an experiment has two possible outcomes: a 50% chance of an outcome that suggests that prostate cancer is aggressive is 0.05 and a 50% chance of an outcome that suggests that prostate cancer is aggressive is 0.35. (Note this preserves the prior that the probability that prostate cancer is aggressive is 0.2 since 0.5 × 0.05 + 0.5 × 0.35 = 0.2.) The expected value of outcomes from watchful waiting and radical prostatectomy given these two possible outcomes of the experiment are reported in the upper and lower parts of panel 5. In the first case, the optimal decision switches to watchful waiting as compared to prostatectomy with the initial information, which yields a net surplus of US$ 600 per patient. In the second case, prostatectomy remains the optimal choice, so there is no additional benefit to having done the study. Thus, the expected net benefit is 0.5 × US$ 600 = US$ 300 per patient. A decision about the study
Table 2
Value of information for cost-effectiveness of screening for prostate cancer

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cost (×1000 US$)</th>
<th>Δc (×1000 US$)</th>
<th>QALY</th>
<th>ΔQALY</th>
<th>Δc/ΔQALY (×1000 US$/QALY)</th>
<th>Value ΔQALY (×1000 US$)</th>
<th>Net increment benefit (×1000 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel 1. Prostate cancer known non-aggressive: fraction rapidly progressing = 0.085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>475</td>
<td>−</td>
<td>23.725</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>11</td>
<td>23.75</td>
<td>0.025</td>
<td>420</td>
<td>2.5</td>
<td>−8.5</td>
</tr>
<tr>
<td>Panel 2. Prostate cancer known aggressive: fraction rapidly progressing = 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>440</td>
<td>−</td>
<td>22</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>45</td>
<td>23.75</td>
<td>1.75</td>
<td>26</td>
<td>175</td>
<td>130</td>
</tr>
<tr>
<td>Panel 3. Aggressiveness of prostate cancer not known: probability aggressive (as in panel 2) = 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>467.6</td>
<td>−</td>
<td>23.38</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>17.4</td>
<td>23.75</td>
<td>0.37</td>
<td>47</td>
<td>37</td>
<td>19.6</td>
</tr>
<tr>
<td>Panel 4. Expected value with perfect information: probability aggressive (as in panel 2) = 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>467.6</td>
<td>−</td>
<td>23.38</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Optimal w/perfect information</td>
<td>476.6</td>
<td>9</td>
<td>23.73</td>
<td>0.35</td>
<td>26</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>8.4</td>
<td>23.75</td>
<td>0.02</td>
<td>420</td>
<td>2</td>
<td>−6.4</td>
</tr>
<tr>
<td>Panel 5. Expected value w/improved information: 50% chance study ⇒ probability aggressive = 0.05; 50% chance study ⇒ probability aggressive = 0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability aggressive = 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>473.3</td>
<td>−</td>
<td>23.64</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>11.7</td>
<td>23.75</td>
<td>0.11</td>
<td>106</td>
<td>11.1</td>
<td>−0.6</td>
</tr>
<tr>
<td>Probability aggressive = 0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchful waiting</td>
<td>462.8</td>
<td>−</td>
<td>23.12</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>485</td>
<td>22.2</td>
<td>23.75</td>
<td>0.63</td>
<td>35</td>
<td>62.9</td>
<td>40.6</td>
</tr>
</tbody>
</table>

*1 QALY = US$ 100,000.

*b Expected value of information (vs. expected value of optimal decision with initial information (prostatectomy)) = 0.5 × 0.6 = 0.3.
might be made by comparing its cost to the expected value of the information (EVI): US$
300 \times 100,000/0.03 = \text{US$ 1 billion. Therefore, the value of this study would be quite}
large, although substantially less than the upper bound suggested by the EVPI.

In a similar manner, possible experiments concerning all other dimensions of the model
might be examined to determine whether they would be worthwhile. In this way, it might be
determined how much could be gained by improved sensitivity and specificity of screening
tests, decreased complications of treatment, improved risk stratification prior to treatment,
and so on.

Clearly, this example does not suggest that a comprehensive attempt to perform a precise
calculation of the type described would generate results resembling these in magnitude.
However, these simplified calculations do illustrate the types of calculations that might be
used to assess the value of research, including more simple calculations such as the EVPI
that require less information. The results also suggest, however, the potential for some of
the approaches used in the literature, such as the threshold (MVI) or EVPI to provide only
very crude upper bounds on the value of information. Just how informative such bounds
may be in practice will ultimately be determined only by detailed empirical analysis of
specific clinical applications.

10. Conclusion

This paper has examined the purposes for which sensitivity analysis is performed in
medical cost–effectiveness analysis and the implications of an expected utility maximization
model for the methods to perform such analyses. The analysis suggests specific approaches
for optimal decision making under uncertainty, specifying such decisions for subgroups,
and assessing the value of collecting additional information.

At a theoretical level, there are several limitations of this work. First, even with cer-
tainty about costs and benefits, cost–effectiveness analysis may not maximize the welfare
of individuals (Meltzer et al., 1998), or society (Arrow, 1951; Meltzer and Johannesson,
1998). Perhaps more important are issues about how risk at the individual level may affect
welfare (Kahneman and Tversky, 1979) that are essentially ignored by the assumptions of
perfect insurance and expected utility maximization. Though this is an important limitation
of QALYs, it is one that needs to be addressed regardless of the issues about aggregate
uncertainty addressed by sensitivity analysis. Though concerns about aggregate financial
and health risk may be less compelling in a social context where the aggregate risks as-
associated with individual technologies are usually modest, the issue of how risk should be
assessed in policy decisions deserves further consideration because other assumptions about
preferences concerning risk or about insurance would lead to different conclusions about
many methodological issues in cost–effectiveness analysis, including sensitivity analysis
(e.g. Mullahy, 1997). Indeed, when a medical intervention has major financial implications
that are difficult to insure against, such as lost earnings, the marginal utility of income
cannot reasonably be considered constant and the results above concerning the ratio of
means will no longer hold. This suggests that it may be useful to distinguish between
uncertainty in insured and uninsured costs in assessing the implications of uncertainty in
costs in cost–effectiveness analyses. Additionally, it suggests that further characterization of
optimal decision making when insurance is not complete would be a valuable area for future work.

Rather than using expected utility to incorporate preferences over uncertain outcomes, it might be argued that it would be preferable to report the joint distribution of benefits and costs. Nothing about this analysis suggests that such data should not be presented. However, using such data to make choices would still require decisions about how to incorporate risk into decision making. Unlike traditional forms of sensitivity analysis, the expected value approach provides direct guidance about how the optimal decision varies with the assumptions that are made.

At an empirical level, there are important challenges in developing meaningful priors concerning the parameters of decision models (e.g. probabilities, quality of life values, discount rates, etc.). As discussed above, this may often require extensive review of existing data, primary data collection, or even analyses based on arbitrary priors. It may also be very difficult to specify how research may affect posteriors. Whether it is possible to adequately address these challenges will be resolved only through efforts to apply these ideas empirically.

These approaches to assess the value of research also pose additional challenges. These include the interdependence of the benefits of related research, the possibility that the research might become less (or more) valuable over time if technological or demographic changes alter the management, frequency or natural history of a disease, and the unpredictability of how the results of research (particularly basic research) might be useful in areas outside the initial areas of inquiry (serendipity). The difficulty of these issues implies that the sort of formal analyses suggested here are more likely to be useful for evaluating clinical research than basic research.

Despite these theoretical and empirical challenges, the importance of making good decisions about the allocation of resources to medical interventions and medical research suggest that work in this area be an important priority. It is encouraging in this regard that the recent IOM report on improving priority setting at the NIH recommended: “In setting priorities, NIH should strengthen its analysis and use of health data, such as burdens and costs of diseases, and on data on the impact of research on the health of the public” (IOM, 1998, p. 11).

On the other hand, the limited number of cases where cost–effectiveness analysis has strongly influenced medical resource allocation and the likely resistance of medical researchers to having research proposals evaluated by formal criteria suggest that formal techniques to set priorities for research will have to prove their value. It is possible that cost–effectiveness analysis may enhance its influence if it can address key methodological challenges in measuring benefits and costs, and techniques for sensitivity analysis. There may also be less resistance to the use of cost–effectiveness analysis in policy decisions, such as allocation of research funds, than to its use in decisions to ration medical treatments. Nevertheless, formal techniques to inform priorities for research seems more likely to gain acceptance through instances where neglected areas of research can be identified through formal analysis than through instances where research is suggested to be of little value. Consistent with this, threats to increases in the NIH budget due to Congressional questions about the value of increased appropriations for research and NIH priorities in allocating research funds were an important motivation for the IOM report that encouraged efforts to use formal approaches to determine the value of research.
Acknowledgements

The author gratefully acknowledges the financial support of this work by the National Institute of Aging, the Robert Wood Johnson Generalist Physician Faculty Scholars Program, and the Department of Defense Prostate Cancer Research Project. I would also like to thank Joshua Angrist, David Cutler, Sue Goldie, Zvi Griliches, Willard Manning, John Mullahy, and Milton Weinstein for helpful comments on earlier drafts of this paper.

References

