An improved heuristic for two-machine flowshop scheduling with an availability constraint

T.C. Edwin Chenga, *, Guoqing Wangb,c

aOffice of the Vice-President (Research and Postgraduate Studies) The Hong Kong Polytechnic University, Kowloon, Hong Kong
bDepartment of Business Administration, Jinan University, Guangzhou, People’s Republic of China
cDepartment of Management, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Received 1 May 1998; received in revised form 1 March 2000

Abstract

In this paper we study the two-machine flowshop scheduling problem with an availability constraint on the first machine. We first show that the worst-case error bound $\frac{1}{2}$ of the heuristic provided by Lee [4] is tight. We then develop an improved heuristic with a worst-case error bound of $\frac{1}{3}$. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Flowshop scheduling; Heuristics; Error bound

1. Introduction

In this paper, we address the two-machine flowshop scheduling problem with an availability constraint on the first machine. We are given two machines M_1 and M_2, and a job set $S = \{J_1, \ldots, J_n\}$. Each job has to be processed first on M_1 and then on M_2. In our problem, M_2 is always available, but M_1 is unavailable for job processing during a certain period of time and the time interval of unavailability is assumed to be known in advance. All jobs are assumed resumable, i.e. if a job cannot finish before the unavailable period of a machine, then its processing may be interrupted and resumed at a later time when the machine becomes available again. The objective is to minimize the makespan.

The two-machine flowshop scheduling problem with an availability constraint is first studied by Lee [4]. He shows that the problem is NP-hard and develops a pseudo-polynomial dynamic programming algorithm to solve the problem optimally. When the availability constraint is imposed on M_1, he provides a heuristic H2 to tackle the problem and proves that its worst-case error bound is $\frac{1}{2}$. But the problem of whether the bound is tight is left open. He also provides another heuristic with a worst-case error bound of $\frac{1}{3}$ for a variant of the problem, where the availability constraint is imposed on M_2. For other works on flowshop scheduling with availability constraints, we refer the interested reader to Kubiat et al. [3], Lee [5], and Cheng and Wang [1].
In this paper, we first show that the bound $\frac{1}{2}$ is tight for H2. We then provide another heuristic to solve the problem and show that the heuristic has a worst-case error bound of $\frac{1}{3}$.

2. Notation

For the problem under consideration, we use the following notation.

- $S = \{J_1, \ldots, J_n\}$: the set of jobs,
- M_1, M_2: machine 1 and machine 2,
- s_1, t_1: M_1 is unavailable from s_1 to t_1, where $0 \leq s_1 \leq t_1$,
- p_i, q_i: processing times for J_i on M_1 and M_2, respectively,
- $\sigma = (J_{a(1)}, \ldots, J_{a(n)})$: a permutation schedule, where $J_{a(i)}$ is the ith job in σ,
- $C_{\text{max}}(\sigma)$: the makespan of σ,
- σ^*: an optimal schedule,
- C^*: the optimal makespan.

Following the notation of Lee [4], we denote the problem under study as $F2|\text{r-a}(M_1)|C_{\text{max}}$, i.e. the makespan minimization problem in the two-machine flowshop with a resumable availability constraint on M_1.

It is well-known that the classical two-machine flowshop makespan minimization problem, $F2||C_{\text{max}}$, can be solved by Johnson’s rule [2]. Johnson’s rule can be implemented as follows:

Johnson’s algorithm. Divide S into two disjoint subsets A and B, where $A = \{J_i | q_i \geq p_i\}$ and $B = \{J_i | q_i < p_i\}$. Order the jobs in A in nondecreasing order of p_i and those in B in nonincreasing order of q_i. Sequence jobs in A first, followed by those in B.

Let C^* be the optimal makespan for $F2||C_{\text{max}}$. It is evident that

$$C^* \leq C^*.$$ \hspace{1cm} (1)

3. An improved heuristic and its worst-case error bound

The heuristic H2 proposed by Lee for $F2/|\text{r-a}(M_1)|C_{\text{max}}$ is as follows:

Heuristic H2

(i) Use Johnson’s algorithm to schedule the jobs and let the corresponding schedule be σ_1.

(ii) Sequence jobs in nonincreasing order of q_i/p_i and let the corresponding schedule be σ_2. Let t be the starting time of the last busy period on M_2, namely M_2 is idle immediately before t. Let J_k be the corresponding job that starts at t on M_2.

(iii) Sequence all jobs in the same order as that in Step (ii) except that we make J_k the first job in the sequence. Let the corresponding schedule be σ_3.

(iv) Choose the schedule with the minimum makespan from the above three schedules. Let $C_{H2} = \min(C_{\text{max}}(\sigma_1), C_{\text{max}}(\sigma_2), C_{\text{max}}(\sigma_3))$.

It is shown in [4] that $(C_{H2} - C^*)/C^* \leq \frac{1}{2}$. Below, we complete the analysis of the algorithm by demonstrating that this bound is tight. Consider a problem instance with $n = 3$. Let $p_1 = 1$, $q_1 = a + 1$, $p_2 = a$, $q_2 = a^2$, $p_3 = a + 2$, and $q_3 = (a + 2)^2$, $s_1 = a$, $t_1 = a^2 + a$, and $s_2 = t_2 = 0$, where $a > 1$.

It is clear that Step (i) will result in sequence $\sigma_1 = \langle J_1, J_2, J_3 \rangle$ with $C_{\text{max}}(\sigma_1) = 3a^2 + 5a + 5$ (see Fig. 1(a)). Steps (ii) and (iii) will result in $\sigma_2 = \sigma_3 = \langle J_3, J_1, J_2 \rangle$, with $C_{\text{max}}(\sigma_2) = C_{\text{max}}(\sigma_3) = 3a^2 + 6a + 7$ (see Fig. 1(b)). Hence, $C_{H2} = 3a^2 + 5a + 5$. However, the optimal solution is $\sigma^* = \langle J_2, J_1, J_3 \rangle$ with $C^* = 2a^2 + 6a + 7$ (see Fig. 1(c)). We see that $(C_{H2} - C^*)/C^*$ goes to $\frac{1}{2}$ as a approaches infinity.

In what follows, we present an improved heuristic that finds a schedule for $F2/|\text{r-a}(M_1)|C_{\text{max}}$ that is at most 4/3 times the optimal value.

Heuristic H1

(i) Let J_a and J_b be two jobs with the largest and the second largest processing time on M_2, respectively, i.e. $\min\{q_i, q_b\} = q_i$ for $i = 1, \ldots, n$, $i \neq a$, and $i \neq b$.

(ii) Use Johnson’s algorithm to schedule the jobs and let the corresponding schedule be σ_1.

(iii) Sequence jobs in nonincreasing order of q_i/p_i. Let the corresponding schedule be σ_2. Let t be the starting time of the latest busy period on M_2 in σ_2, namely M_2 is idle immediately before t. Let J_k be the corresponding job that starts at t on M_2.

(iv) Sequence the jobs in the same sequence as that in Step (iii) except that J_a and J_b are scheduled as the first two jobs such that the completion time of the last one is minimized. Let the corresponding schedule be σ_3.
If \(t > s_1 \) and \(p_k \leq s_1 \), then construct \(\sigma_4 \) by maintaining all jobs in the same order they appear in \(\sigma_2 \), with the exception of \(J_k \) which is moved to position \(u \) in which it finishes by time \(s_1 \) and the job in position \(u + 1 \) finishes after \(s_1 \) on \(M_1 \).

Let \(S_1 = \{ J_i \mid \frac{q_i}{p_i} \geq 1 \text{ and } p_i < p_k \} \) and \(S_2 = S \setminus (S_1 \cup \{ J_k \}) \). Let \(\sigma_5 = (S_1, J_k, S_2) \), where all jobs in \(S_1 \) are scheduled in nonincreasing order of \(q_i/p_i \) and jobs in \(S_2 \) are scheduled according to Johnson’s rule.

Choose the schedule with the minimum makespan from the above five schedules.

Lemma 2. Let \(T_{\sigma_2(w)} \) be the completion time of any job \(J_{\sigma_2(w)} \) on \(M_1 \) in \(\sigma_2 \). Given an arbitrary feasible schedule \(\sigma \), let \(J_{\sigma(v)} \) be the last job which finishes no later than time \(T_{\sigma_2(w)} \) on \(M_1 \). We have

(i) \(\sum_{j=1}^{w} q_{\sigma(j)} \leq \sum_{j=1}^{n} q_{\sigma_2(j)} \),
(ii) \(\sum_{j=1}^{w} q_{\sigma(j)} \geq \sum_{j=1}^{n} q_{\sigma_2(j)} \).

Proof It is clear that \(\sum_{j=1}^{w} p_{\sigma(j)} \leq \sum_{j=1}^{n} p_{\sigma_2(j)} \) and \(\sum_{j=t+1}^{n} p_{\sigma(j)} \geq \sum_{j=1}^{n} p_{\sigma_2(j)} \). Since all jobs are sequenced in nonincreasing order of \(q_i/p_i \) in \(\sigma_2 \), we can easily check the results.

Lemma 3. For schedule \(\sigma_2 \) and job \(J_k \) defined in Step (iii) of Heuristic HI, the following inequalities hold:

(i) \(C_{\text{max}}(\sigma_2) \leq C^* + q_k \),
(ii) If \(t \leq s_1 \) or \(t \geq t_1 + p_k \), then \(C_{\text{max}}(\sigma_2) \leq C^* + p_k \).

Proof Assume that \(J_{\sigma_2(w)} = J_k \), then \(C_{\text{max}}(\sigma_2) = t + \sum_{j=w}^{n} q_{\sigma_2(j)} \).

(i) Let \(J_{\sigma_2(v)} \) be the last job which finishes no later than time \(t \) on \(M_1 \) in \(\sigma^* \). From Lemma 2(ii), we have \(\sum_{j=t+1}^{w} q_{\sigma(j)} \geq \sum_{j=1}^{w} q_{\sigma_2(j)} \). Hence, we have \(C_{\text{max}}(\sigma_2) \leq C^* + q_k \).

(ii) Let \(L \) be the total idle time on \(M_2 \) in \(\sigma_2 \). It is clear that \(L = t - \sum_{j=1}^{w-1} q_{\sigma_2(j)} \). Let \(J_{\sigma_2(v')} \) be the last job...
which finishes no later than time $T_{s_2(w-1)}$ on M_1, and L^* the total idle time on M_2 in σ^*. From Lemma 2(i), we know that $\sum_{j=1}^{w} q_{\sigma^*(j)} = \sum_{j=1}^{w} q_{s_2(j)}$. When $t \leq s_1$ or $t - p_k \geq t_1$, it is clear that $L^* \geq t - p_k - \sum_{j=1}^{w} q_{s_2(j)}$. Hence, we have $L^* \geq L - p_k$, and so $C_{\text{max}}(\sigma_2) = C^* + p_k$.

Theorem 1. $(C_{\text{III}} - C^*)/C^* \leq \frac{1}{3}$.

Proof. It suffices to consider the case with $\sum p_i > s_1$. Note that $C_{\text{max}}(\sigma_1) \leq C^* + t_1 - s_1$. Hence, if $t_1 - s_1 \leq C^*/3$ we are done. Therefore, in the remainder of the proof, we are only interested in the case with $t_1 - s_1 > C^*/3$. Let $\tilde{S} = \{J_i | q_i > C^*/3, i = 1, \ldots, n\}$. It is obvious that $|\tilde{S}| \leq 2$. When $|\tilde{S}| = 0$, from Lemma 3(i), we have $C_{\text{max}}(\sigma_2) = C^* + q_k < 4C^*/3$. Hence, we only need to consider the following two cases.

Case 1: $|\tilde{S}| = 2$

In this case, we have $\tilde{S} = \{J_a, J_b\}$. Let us consider Step (iv). Let $C^*(\tilde{S})$ denote the optimal completion time of the jobs in \tilde{S} in σ_3. It is clear that $C^*(\tilde{S}) \leq C^*$. Let t' be the starting time of the last busy period on M_2 in σ_3, and J_l be the corresponding job that starts at t' on M_2. If $J_l = J_a$ or J_b, we have

$$C_{\text{max}}(\sigma_3) = C^*(\tilde{S}) + \sum_{J_i \in \tilde{S}} q_i - q_a - q_b$$

$$\leq C^* + C^*/3 \leq 4C^*/3;$$

otherwise, we have

$$C_{\text{max}}(\sigma_3) \leq t' + \sum_{J_i \in \tilde{S}} q_i - q_a - q_b$$

$$\leq \sum_{J_i \in \tilde{S}} p_i + (t_1 - s_1) + C^*/3$$

$$\leq 4C^*/3.$$

Case 2: $|\tilde{S}| = 1$

Let us consider σ_2. Since $C_{\text{max}}(\sigma_2) \leq C^* + q_k$ from Lemma 2(i), it suffices to consider $q_k = q_a > C^*/3$, for otherwise we are done. Now, we need to consider the following two subcases.

1. $t \leq s_1$

From Lemma 3(ii), we have $C_{\text{max}}(\sigma_2) \leq C^* + p_k$. If $p_k \leq C^*/3$, then we are done. Now suppose that $p_k > C^*/3$. Note that we must have $q_k < 2C^*/3$ and

$$\sum_{J_i \in S \setminus \{J_k\}} p_i \leq C^* - p_k - (t_1 - s_1) \leq C^*/3. \tag{2}$$

It is clear that schedule σ_2 will result in the same makespan for both $F2/r-\sigma(M_1)/C_{\text{max}}$ and $F2//C_{\text{max}}$ in this subcase, and the optimal makespan C^* for $F2/r-\sigma(M_1)/C_{\text{max}}$ is no less than the optimal makespan C^* for $F2//C_{\text{max}}$. Let $A' = \{J_i | q_i \geq p_i, i = 1, \ldots, n, i \neq k\}$ and $B' = S \setminus (A' \cup \{J_k\})$. It is not difficult to see that there exists an optimal solution for $F2//C_{\text{max}}$ in which all jobs in A' are scheduled before J_k and all jobs in B' are scheduled after J_k according to Johnson’s rule. Thus, we have

$$C^* \geq C_{\text{max}}(\sigma_2) \geq \sum_{J_i \in A'} p_i + p_k + q_k \sum_{J_i \in B'} q_i \tag{3}$$

and so

$$\sum_{J_i \in B'} q_i \leq C^* - p_k - q_k < C^*/3. \tag{4}$$

We first suppose that $q_k \geq p_k$. Let N be the set of jobs which follow J_k in σ_2 and satisfy $q_i \geq p_i$. It is clear that

$$\sum_{J_i \in N} q_i \leq p_k \sum_{J_i \in N} p_i \tag{5}$$

Since all jobs are scheduled in nonincreasing order of q_i/p_i in σ_2, it is clear that $\sigma_2 = \langle A' \setminus N, J_k, N, B' \rangle$.

From (2)–(5), we have

$$C_{\text{max}}(\sigma_2) = \sum_{J_i \in A' \setminus N} p_i + p_k + q_k + \sum_{J_i \in N} q_i + \sum_{J_i \in B'} q_i$$

$$\leq \sum_{J_i \in A' \setminus N} p_i + p_k + q_k$$

$$+ \frac{q_k}{p_k} \sum_{J_i \in N} p_i + \sum_{J_i \in B'} q_i$$

$$\leq \sum_{J_i \in A'} p_i + p_k + q_k + \sum_{J_i \in B'} q_i$$

$$+ \left(\frac{q_k}{p_k} - 1\right) \sum_{J_i \in N} p_i$$

$$< C^* + \sum_{J_i \in N} p_i$$

$$< 4C^*/3.$$
Now suppose that \(q_k < p_k \). Let \(N \) be the set of jobs which follow \(J_k \) in \(\sigma_2 \). From (2)–(4), we have

\[
C_{\max}(\sigma_2) = \sum_{J \in S \setminus \{A\}} p_i + p_k + q_k + \sum_{J \in N} q_i \\
\leq \sum_{J \in S \setminus \{A\}} p_i + p_k + q_k + \sum_{J \in N} q_i \\
\leq \sum_{J \in S \setminus \{A\}} p_i + C^* \\
< 4C^*/3.
\]

2. \(t > s_1 \). We consider the following two situations.

(a) There exists an optimal schedule \(\sigma^* \) such that \(J_k \) finishes before \(s_1 \) on \(M_1 \).

Let us focus on schedule \(\sigma_4 \) obtained in Step (v). Let \(t' \) be the starting time of the last busy period on \(M_2 \), and \(J_{\alpha(t)} \) be the corresponding job that starts at \(t' \) on \(M_2 \). Whenever \(v < u \) or \(v > u \), following the same argument as that for Lemma 3, we can easily show that \(C_{\max}(\sigma_4) - C^* \leq q_{\alpha(v)} \leq C^*/3 \). Now we focus on \(v = u \), i.e. \(J_{\alpha(v)} = J_k \).

Let \(L \) be the total idle time on \(M_2 \) in \(\sigma_4 \). We have

\[
L = p_k - \sum_{j=1}^{u-1} (q_{\sigma(j)} - p_{\sigma(j)}).
\]

If \(p_k \leq C^*/3 \), then all jobs preceding \(J_k \) in \(\sigma_4 \) satisfy the conditions

\[
q_i \geq q_k \geq p_k > 1.
\]

Hence, we have

\[
L < p_k \leq C^*/3.
\]

If \(p_k > C^*/3 \), note again that we have

\[
\sum_{J \in S \setminus \{A\}} p_i \leq C^* - (t_1 - s_1) - p_k \leq C^*/3.
\]

Let \(J_{\sigma^*(\alpha')} = J_k \) in \(\sigma^* \). Then we have

\[
L^* \geq p_k - \sum_{j=1}^{u'-1} (q_{\sigma^*(j)} - p_{\sigma^*(j)}),
\]

and so

\[
L \leq L^* + \left(\sum_{j=1}^{u-1} p_{\sigma(j)} - \sum_{j=1}^{u'-1} p_{\sigma^*(j)} \right) + \left(\sum_{j=1}^{u'-1} q_{\sigma^*(j)} - \sum_{j=1}^{u-1} q_{\sigma(j)} \right).
\]

If \(\sum_{j=1}^{u-1} p_{\sigma(j)} \geq \sum_{j=1}^{u'-1} p_{\sigma^*(j)} \), it is clear that \(\sum_{j=1}^{u-1} q_{\sigma(j)} \geq \sum_{j=1}^{u'-1} q_{\sigma^*(j)} \) as all jobs except \(J_k \) are sequenced in nondecreasing order of \(q_i/p_i \) in \(\sigma_4 \). From (7), we have

\[
L \leq L^* + \sum_{j=1}^{u-1} p_{\sigma(j)} < L^* + C^*/3.
\]

If \(\sum_{j=1}^{u-1} p_{\sigma(j)} < \sum_{j=1}^{u'-1} p_{\sigma^*(j)} \), we have \(\sum_{j=1}^{u-1} q_{\sigma(j)} \geq \sum_{j=1}^{u'-1} q_{\sigma^*(j)} \) and so

\[
L < L^* + \sum_{j=1}^{u'-1} q_{\sigma^*(j)} - \sum_{j=1}^{u-1} q_{\sigma(j)} \\
< L^* + q_{\sigma(u+1)} < L^* + C^*/3.
\]

(b) There exists no optimal schedule such that \(J_k \) finishes before \(s_1 \) on \(M_1 \).

It is clear that \(p_k < C^*/3 \) and so \(p_k < q_k \); otherwise, we have \(C^* \geq t_1 - s_1 + p_k + q_k > C^* \), a contradiction. Let us focus on schedule \(\sigma_5 \) obtained in Step (vi). We first show that there exists an optimal solution in which all jobs in \(S_1 \) are scheduled before \(J_k \), and all jobs in \(S_2 \) are scheduled after \(J_k \) in this situation. Let \(\sigma^* \) be an optimal schedule, and assume, without loss of generality, that \(\sigma^* \) satisfies Lemma 1. Then it is immediately clear that any job \(J_i \in S_1 \) which finishes after \(t_1 \) on \(M_1 \) is scheduled before \(J_k \) in \(\sigma^* \). This also means that all jobs in \(S_2 \) are scheduled before \(J_k \) in \(\sigma^* \). As it is also clear that any job \(J_i \) such that \(p_i \geq p_k \) which finishes after \(t_1 \) can be scheduled after \(J_k \), now suppose that there is a job \(J_i \) such that \(p_i \geq p_k \) finishes before \(s_1 \) in \(\sigma^* \). Since \(q_i < q_k \), it is easy to see that interchanging \(J_i \) and \(J_k \) in \(\sigma^* \) will not increase the makespan. This means that there exists an optimal solution in which \(J_k \) finishes before \(s_1 \) on \(M_1 \), a contradiction. Again, as it is clear that any job \(J_i \) such that \(p_i > q_i \) and \(p_i < p_k \) which finishes after \(s_1 \) on \(M_1 \) follows \(J_k \) in \(\sigma^* \), we suppose that there are
some jobs such that $p_i > q_i$ and $p_i < p_k$ which finish before s_1 on M_1 in σ^*. Let J_f be the last job which finishes before s_1 on M_1 in σ^*. It is clear that $p_i > q_j$, as σ^* satisfies Lemma 1. Since $p_i < p_k < q_k$, it is not difficult to see that moving J_f to the position immediately after J_k will not increase the makespan. Repeating the same process, we see that there is an optimal schedule in which all jobs in S_2 are scheduled after J_k.

As J_k finishes after t_1 on M_1 in σ^*, and so all jobs in S_2 must also finish after t_1 on M_1, and it is optimal to assign the jobs by Johnson’s rule. Let $C^*(S_1)$ be the completion time of the last job in S_1 in the optimal solution. Then we have

$$C^* = C^*(S_1) + L + q_k + \sum_{J_i \in S_2} q_i,$$

where L is the total idle time on M_2 between the last job of S_1 and the last job of S_2 in the optimal solution.

Let $C(S_1) = C^*(S_1) + \Delta$ be the completion time of the last job in S_1 in σ_5. From Lemma 3(i), we know that

$$\Delta \leq \max\{q_i | J_i \in S_1\} < C^*/3.$$

Fig. 2. Solution of Step (ii); (b) solution of Steps (iii) and (iv); (c) solution of Step (v); (d) solution of Step (vi) and (e) optimal solution.
From (8) and (9), we have
\[C_{\max}(\sigma_5) = C(S_1) + \max\{0, L - A\} + q_k + \sum_{J_i \in S_2} q_i \]
\[< C^*(S_1) + L + q_k + \sum_{J_i \in S_2} q_i + C^*/3 \]
\[< 4C^*/3 \]
The proof is complete. \(\square\)

Remark
(i) The time complexity of the algorithm is \(O(n \log n)\).

(ii) Although we are not able to show that the bound is tight, the following instance with \(n = 3\) shows that the bound cannot be better than \(1/3\). Consider a problem with \(p_1 = a - 1\), \(q_1 = (a - 1)^2\), \(p_2 = a\), \(q_2 = a^2\), \(p_3 = a + 1\), and \(q_3 = 2(a + 1)^2\), \(s_1 = 2a\), and \(t_1 = 2a^2 + 2a\), where \(a \gg 1\). It is clear that Step (ii) will result in schedule \(\sigma_1 = \langle J_1, J_2, J_3 \rangle\) with
\[C_{\max}(\sigma_1) = 5a^2 + 7a + 2 \] (see Fig. 2(a)). Both Steps (iii) and (iv) will result in schedule \(\sigma_2 = \sigma_3 = \langle J_3, J_2, J_1 \rangle\) with
\[C_{\max}(\sigma_2) = C_{\max}(\sigma_3) = 5a^2 + 2 \] (see Fig. 2(b)).
Step (v) will result in schedule \(\sigma_4 = \langle J_2, J_3, J_1 \rangle\) with
\[C_{\max}(\sigma_4) = 6a^2 + 4a + 4 \] (see Fig. 2(c)).
Step (vi) will result in schedule \(\sigma_5 = \langle J_2, J_1, J_3 \rangle\) with
\[C_{\max}(\sigma_5) = 5a^2 + 7a + 2 \] (see Fig. 2(d)).
Hence, \(C_{II} = 5a^2 + 2\). However, the optimal solution is \(\sigma^* = \langle J_3, J_1, J_2 \rangle\) with \(C^* = 4a^2 + 3a + 4\) (see Fig. 2(d)). Hence, \((C_{II} - C^*)/C^*\) goes to \(1/4\) as \(a\) approaches infinity.

Acknowledgements

This research was supported in part by The Hong Kong Polytechnic University under grant number G-YW16. We are grateful to an anonymous referee for his constructive comments on earlier versions of the paper.

References