Monge strikes again: optimal placement of web proxies in the internet

Gerhard J. Woeginger

Institut für Mathematik B, TU Graz, Steyrergasse 30, A-8010 Graz, Austria

Received 1 June 1999; received in revised form 1 May 2000

Abstract

In a recent paper (Proceedings of IFIP’98), Li et al. study the problem of placing \(m \) web proxies in the internet under a given traffic pattern. They consider the special case of a linear net topology with \(n \) nodes. Their goal is to minimize the overall latency of accessing the target web server subject to the network resources and traffic pattern. They show how this problem can be solved in \(O(n^2 m) \) time. In this short note, we observe that one of the underlying cost functions in this problem carries a Monge structure. By exploiting this structure and by applying some well-known results from the literature, we get a faster algorithm with time complexity \(O(nm) \).

Keywords: Optimization; Dynamic programming; Monge property; Internet; Caching; Web proxy; Web server

1. Introduction

The poor performance and the long response times on the internet are due to many reasons, like congestion during peak times, links with inadequate bandwidth, long propagation delays, etc. Caching is one method for dealing with some of these problems. The main idea in caching is to keep retrieved documents close to the clients and thus to bring down the access latency. Essentially, caching can be done either at the client’s web browser, or at the web server itself, or at a web proxy [10]. A web proxy is an intermediate server acting as a caching agent between clients and web servers. There has been considerable work done on various aspects of web proxies, see e.g. [2,5]. The effectiveness of a proxy is primarily determined by its locality which in turn depends on a number of factors such as access patterns and configurations. Placing a web proxy at the ‘wrong’ place is not only costly, but also does little to improve the performance.

Li et al. [7] study the problem of minimizing the overall latency of accessing the target web server. They consider the special case of a linear net topology. Such a net topology is a path with nodes \(V = \{v_0, v_1, \ldots, v_n\} \) and edges \([v_{j-1}, v_j]\) for \(1 \leq j \leq n \). For \(1 \leq j \leq n \), the weight \(w_j \) of \(v_j \) represents the traffic traversing this node. For \(1 \leq j \leq n \), the length of edge \([v_{j-1}, v_j]\) is measured by a non-negative real value \(d_j \) which can be interpreted as either latency, or link cost.
or hop count, etc. The distance \(d(v_i, v_j) \) between two
nodes \(v_i \) and \(v_j \) is the total length of all edges on the
path between \(v_i \) and \(v_j \). There is a target web server at
node \(v_0 \) whose data should be accessed by every node
\(v_j \). If there is a proxy located between \(v_0 \) and \(v_j \), then \(v_j \)
only needs to access the data cached at the proxy; this
 reduces the traffic on the network between \(v_0 \) and the proxy
and thus also reduces the overall accessing latency.

Let \(\Phi = \{v_{p_1}, v_{p_2}, \ldots, v_{p_m}\} \) with \(1 \leq p_1 < p_2 < \cdots < p_m \leq n \) be a set of \(m \) proxies located on this linear
net. Then every node \(v_j \) with \(j < p_1 \) accesses the data
directly at the target web server at \(v_0 \) (and thus does
not use any of the proxies); we set \(\Phi(v_i) = v_0 \). For
\(1 \leq k \leq m - 1 \), the nodes \(v_j \) with \(p_k \leq j < p_{k+1} \) access
the data of proxy \(v_{p_k} \), and we set \(\Phi(v_j) = v_{p_k} \). Finally,
the nodes \(v_j \) with \(j \geq p_m \) access proxy \(v_{p_m} \), and we set
\(\Phi(v_j) = v_{p_m} \). Then the latency caused by node \(v_j \) equals
\(\sum_{j=1}^{n} w_{jd}(v_j, \Phi(v_j)) \), and the overall access latency with
proxy set \(\Phi \) is

\[\sum_{j=1}^{n} w_{jd}(v_j, \Phi(v_j)). \]

The goal is to find in \(O(n^2m) \) time a set \(\Phi \) of \(m \) pro-
xies that minimizes the objective value in (1). In the
language of facility location, this problem is the asym-
metric \(k \)-median problem on a directed path. We refer
the reader to Li et al. [7,8] for more information on
this problem and for a discussion of some of its more
complex variants. The paper [7] finds in \(O(n^2m) \) time
the best possible proxy set; this is done by modelling
the problem as a dynamic program.

Contribution of this note. We reformulate the dy-
namic program of Li et al. [7], and we observe that
one of the underlying cost functions carries a \(\Phi \) Monge
structure. Such Monge structures show up in a wide
variety of applications like transportation problems,
flow problems, search problems, Travelling salesman
variants, economic lot sizing problems, geometric
problems, etc. Usually, this additional structure leads
to polynomial-time solution algorithms or at least
helps to speed up algorithms. For more information
on Monge structures, we refer the reader to the survey
article by Burkard et al. [3]. In this note, we exploit
this Monge structure in the proxy placement prob-
lem. By applying some well-known results from the
literature, we implement the dynamic programming
algorithm within \(O(nm) \) time. This is an improvement
of \(O(nm) \) over the time complexity of Li et al. [7].

This note is organized as follows. In Section 2 we
summarize some results from the literature on search-
ing and optimizing under Monge structures. In Section
3 we apply the results of Section 2 to the proxy place-
ment problem and thereby derive a solution algorithm
with \(O(nm) \) running time.

2. Dynamic programming under Monge structures

In this section, we recapitulate some results of Ag-
garwal et al. [1] on a problem that comes up as a
subproblem in certain dynamic programming formu-
lations: Let \(a(i, j) \) be a real-valued function for integers
\(0 \leq j \leq i \leq n \) that fulfills the following two conditions.

(C1) For \(0 \leq i \leq j \leq n \), the value \(a(i, j) \) can be com-
puted in constant time.

(C2) For \(0 \leq i \leq j \leq s \leq n \), the inequality \(a(i, j) +
a(r, s) \leq a(i, s) + a(r, j) \) holds.

Condition (C1) essentially states that we can access
the function \(a(i, j) \) via a very fast oracle. Condition
(C2) essentially states that the \(n \times n \) matrix \(A \) with
entries \(a(i, j) \) above the main diagonal is an upper
triangular Monge matrix (the entries below the main
diagonal of \(A \) are irrelevant for this Monge property);
cf. [3] for more information on this concept.

Proposition 2.1 (Aggarwal et. al. [1]). If conditions
(C1) and (C2) are fulfilled, then all values \(E[j] \),
\(j = 1 \ldots n \), that are specified by

\[E[j] = \min \{a(i, j) : 1 \leq i < j\} \]

can be computed in \(O(n) \) overall time.

Proposition 2.2. Let \(m \) and \(n \) be two integers with
\(m \leq n \). Let \(a(i, j) \) be a real-valued function for integers
\(0 \leq j \leq i \leq n \) that satisfies (C1) and (C2). Let \(F[j, 1] \)
with \(1 \leq j \leq n \) be given real numbers. Then all values
\(F[j, k] \) with \(1 \leq j \leq n \) and \(2 \leq k \leq m \) that are specified by

\[F[j, k] = \min \{F[i, k-1] + a(i, j) : 1 \leq i < j\} \]

can be computed in \(O(nm) \) overall time.
Proof. The computation goes through $m-1$ phases. In the kth phase ($k=2,\ldots,m$) we compute all values $F[j,k]$ from the values $F[j,k-1]$ in $O(n)$ overall time. Clearly, this will prove the theorem. Indeed, let $k\geq 2$ and assume that we already have computed all values $F[j,k-1]$ with $1 \leq j \leq n$. For integers $0 \leq j \leq i \leq n$ define the real-valued auxiliary function $b_k(i,j) := F[i,k-1] + a(i,j)$.

With this, the recursion in (3) becomes a special case of the recursion in (2). Moreover, since the values $F[i,k-1]$ are already known and since $a(i,j)$ satisfies condition (C1), also the auxiliary function $b_k(i,j)$ can be evaluated in constant time. Finally, it is easily verified that if $a(i,j)$ fulfills the Monge condition (C2), then also $b_k(i,j)$ does fulfill (C2). Summarizing, $b_k(i,j)$ fulfills conditions (C1) and (C2), and according to Proposition 2.1 we can compute all values $F[j,k]$ with $1 \leq j \leq n$ in $O(n)$ time. \hfill \qed

More general (and much more sophisticated) results on how to exploit Monge structures to speed up dynamic programming can be found in the work of Wilber [9], Eppstein [4], and Larmore and Schieber [6].

3. A fast algorithm for the optimal placement of proxies

In this section, we show that the proxy placement problem can be solved in $O(nm)$ time by applying Proposition 2.2 to it. To simplify the presentation, we introduce the numbers $d_q = 0$ and $w_0 = 0$. For integers $0 \leq i \leq j \leq n$ we define a function value $a(i,j)$ that measures the cost incurred on the segment between two adjacent proxies at v_i and v_j in a partial solution:

$$a(i,j) = \sum_{\ell=i+1}^{j-1} w_\ell d(v_\ell, v_i) + \sum_{\ell=i+1}^{j-1} w_\ell d_q.$$ \hfill (4)

(Recall that $d_q = d(v_{q-1}, v_q)$ is the length of the edge $[v_{q-1}, v_q]$.) As usual, we assume that an empty sum takes value 0. Next, we will derive several properties of this function $a(i,j)$. To this end, we define the following auxiliary values for $0 \leq j \leq n$:

$$D[j] = \sum_{q=0}^{j} d_q, \quad W[j] = \sum_{\ell=j}^{n} w_\ell,$$

$$X[j] = \sum_{q=0}^{j} w_q d_q, \quad Y[j] = \sum_{\ell=j}^{n} \sum_{q=0}^{\ell} w_q d_q,$$

Lemma 3.1. All the auxiliary values $D[j]$, $W[j]$, $X[j]$, and $Y[j]$ with $0 \leq j \leq n$ can be computed in $O(n)$ overall time.

Proof. Observe that $D[0] = 0$ and $D[j] = D[j-1] + d_j$ holds for $j > 0$. Similarly, $W[n] = w_n$ and $W[j] = W[j+1] + w_j$ holds for $j < n$. Hence, all values $D[j]$ and $W[j]$ can be computed in $O(n)$ time by going from $j=0$ up to $j=n$, respectively, by going from $j=n$ down to $j=0$. Next, observe that $X[0] = 0$, that $X[j] = X[j-1] + d_j W[j]$ for $j > 0$, that $Y[n] = w_n D[n]$, and that $Y[j] = Y[j+1] + w_j D[j]$ for $j < n$. Hence, once we have determined the values $D[j]$ and $W[j]$, also all the values $X[j]$ and $Y[j]$ can be computed in $O(n)$ time. \hfill \qed

Lemma 3.2. For all integers $0 \leq i \leq j \leq n$ function $a(i,j)$ specified in (4) satisfies

$$a(i,j) = Y[0] - Y[j] - X[i] + D[i] \cdot W[j]$$ \hfill (5)

$$\sum_{\ell=0}^{n} \sum_{q=0}^{\ell} w_q d_q - \sum_{\ell=j}^{n} \sum_{q=0}^{\ell} w_q d_q - \sum_{q=0}^{i} \sum_{\ell=q}^{n} w_q d_q + \sum_{q=0}^{i} \sum_{\ell=q}^{n} w_q d_q$$

$$= \sum_{q=0}^{i} \sum_{\ell=q}^{n} w_q d_q - \sum_{q=0}^{j-1} \sum_{\ell=q}^{n} w_q d_q$$

$$= \sum_{q=0}^{j-1} \sum_{\ell=q}^{n} w_q d_q - \sum_{q=0}^{j-1} \sum_{\ell=q}^{j-1} w_q d_q$$

$$= \sum_{q=i+1}^{j} \sum_{\ell=q}^{n} w_q d_q.$$ \hfill (6)

To complete the argument, we observe that $\sum_{q=i+1}^{j-1} \sum_{\ell=q}^{j-1} w_q d_q$ equals $a(i,j)$ as defined in (4). \hfill \qed
Lemma 3.3. After a preprocessing phase that takes $O(n)$ time, we can compute for any i and j with $0 \leq i \leq j \leq n$ the value $\tilde{a}(i,j)$ in constant time. Hence, after this preprocessing phase function $\tilde{a}(i,j)$ fulfills condition (C1). Moreover, function $\tilde{a}(i,j)$ fulfills condition (C2).

Proof. The preprocessing phase consists in computing the values $D[j], W[j], X[j],$ and $Y[j]$ as described in Lemma 3.1. By Lemma 3.2 we then can compute $\tilde{a}(i,j)$ in constant time. This proves the first part of the lemma, and it remains to prove that $\tilde{a}(i,j)$ fulfills condition (C2). Let $0 \leq i \leq r \leq j \leq s \leq n$ and use (5) to get

$$\tilde{a}(i,s) + \tilde{a}(r,j) - \tilde{a}(i,j) - \tilde{a}(r,s)$$

$$= (D[r] - D[i])(W[j] - W[s]).$$

Observe that since the w_r and d_q are non-negative numbers, $D[r] \geq D[i]$ and $W[j] \geq W[s]$ holds. Hence, the product $(D[r] - D[i])(W[j] - W[s])$ is non-negative and condition (C2) indeed is fulfilled.

Theorem 3.4. The problem of placing m web proxies in a linear network topology with n nodes so as to minimize the overall accessing latency in (1) can be solved in $O(nm)$ time.

Proof. For $1 \leq j \leq n$, we denote $V_j = \{v_1, \ldots, v_j\}$. For $1 \leq j \leq n$ and $1 \leq k \leq m$, we denote by $F[j,k]$ the minimum total latency caused by the nodes in V_j (disregarding the nodes in $V - V_j$), given that (i) at most k of the nodes in V_j are proxies, and that (ii) node v_i itself is a proxy. Then for $1 \leq j \leq n$, $F[j,1] = \sum_{i=0}^{j-1} w_r d(v_i, v_0) = \tilde{a}(0,j)$ holds. For $1 \leq k \leq m$, $F[1,k] = 0$. Moreover for $2 \leq j \leq n$ and $2 \leq k \leq m$ we have

$$F[j,k] = \min\{F[i,k-1] + \tilde{a}(i,j) : 1 \leq i < j\}. \quad (6)$$

The correctness of (6) is easy to verify: Consider a proxy configuration with k proxies on V_j that satisfies (i) and (ii). Let i denote the maximal index $1 \leq i < j - 1$ in this configuration for which node v_i has a proxy. Then the latency caused by the nodes v_{i+1}, \ldots, v_{j-1} (which all access the data of proxy v_i) equals $\sum_{j=i+1}^{j-1} w_r d(v_i, v_j)$ which is exactly $\tilde{a}(i,j)$. By the definition of $F[\cdot, \cdot]$, the latency caused by the remaining nodes v_1, \ldots, v_{i}, with $k - 1$ proxies is at least $F[i,k-1]$. Hence, the expression in (6) simply selects the proxy position v_i that minimizes the total latency.

The recursion in (6) is of the form in (3). We compute the values $D[j], W[j], X[j],$ and $Y[j]$ in $O(n)$ time as described in Lemma 3.1. Then all initial values $F[j,1]$ are determined in $O(n)$ time. By Lemma 3.3, the function $\tilde{a}(i,j)$ fulfills conditions (C1) and (C2). Consequently, by Proposition 2.2 we can determine all values $F[j,k]$ with $2 \leq j \leq n$ and $1 \leq k \leq m$ in $O(nm)$ overall time.

In order to compute the optimal objective value, we consider the proxy node v_i with highest index in an optimal solution. Then in this optimal solution the nodes v_1, \ldots, v_i cause a total latency of $F[i,m]$ and the nodes v_{i+1}, \ldots, v_n cause a total latency $\tilde{a}(i,n)$. With this, the value $\min\{F[i,m] + \tilde{a}(i,n) : m \leq i \leq n\}$ constitutes the optimal objective value.

References