Corrigendum

Donald A. Dawsona, *, Shui Fengb

a The Fields Institute, 222 College Street, Toronto, Ont., Canada M5T 3J1
b McMaster University, Hamilton, Ont., Canada L8S 4K1

The space \mathcal{X} in Section 2 is the space of all finitely additive, nonnegative, mass one measures on E. Every element μ in \mathcal{X} has the following unique decomposition:

$$\mu = \mu_{ac} + \mu_s + \mu_p,$$

where μ_p is a pure finite additive measure, μ_{ac} and μ_s are both countably additive with $\mu_{ac} \ll \nu_0$, $\mu_s \perp \nu_0$. A nonnegative finite additive measure is called pure finite additive if there is no nonzero, nonnegative, countably additive measure that is less than it. An element μ in \mathcal{X} is a probability measure if and only if $\mu_p(E) = 0$. Thus \mathcal{X} is strictly bigger than $M_1(E)$ (even though every element of \mathcal{X} can be associated to a continuous linear functional on $C([0,1])$). Thus, we need to change the space $M_1(E)$ in Theorem 2.4 to \mathcal{X}, and the rate function is given by

$$I(\mu) = \begin{cases}
0H(\nu_0|\mu_{ac}) & \text{if } \mu \ll \nu_0, \mu \notin M_1(E), \\
0H(\nu_0|\mu) & \text{if } \mu \ll \nu_0, \mu \in M_1(E), \\
\infty & \text{else.}
\end{cases}$$

Theorems 2.5 and 3.4 should be modified accordingly. All calculations about the infinite dimensional LDP hold true for probability-valued paths.

We thank W. Stannat for pointing out the deficiency.

¹ PII of the original article: S0304-4149(98)00035-0

* Corresponding author.

E-mail address: don@fields.utoronto.ca (D.A. Dawson)