A PROOF OF A CONJECTURE OF BOBKOV AND HOUDRE

S. KWAPIEN and M.PYCIA
Department of Mathematics, Warsaw University, ul.Banacha 2, 02-097 Warsaw, Poland.
e-mail: kwapstan@mimuw.edu.pl, mpycia@mimuw.edu.pl

W. SCHACHERMAYER
Department of Statistics, University of Vienna, Bruennerstrasse 72, A-1210 Wien, Austria.
e-mail: wschach@stat1.bwl.univie.ac.at

AMS 1991 Subject classification: 60E05
Keywords and phrases: Gaussian Distribution, Characterization.

Abstract
S.G. Bobkov and C. Houdré recently posed the following question on the Internet ([1]): Let \(X, Y \) be symmetric i.i.d. random variables such that:

\[
P\left(\frac{|X + Y|}{\sqrt{2}} \geq t \right) \leq P\{|X| \geq t\},
\]

for each \(t > 0 \). Does it follow that \(X \) has finite second moment (which then easily implies that \(X \) is Gaussian)? In this note we give an affirmative answer to this problem and present a proof. Using a different method K. Oleszkiewicz has found another proof of this conjecture, as well as further related results.

We prove the following:

Theorem. Let \(X, Y \) be symmetric i.i.d. random variables. If, for each \(t > 0 \),

\[
P\{|X + Y| \geq \sqrt{2}t\} \leq P\{|X| \geq t\},
\]

then \(X \) is Gaussian.

Proof. Step 1. \(\mathbb{E}\{|X|^p\} < \infty \) for \(0 \leq p < 2 \).
For this purpose it will suffice to show that, for \(p < 2 \), \(X \) has finite weak \(p \)'th moment, i.e., that there are constants \(C_p \) such that

\[
P\{|X| \geq t\} \leq C_p t^{-p}.
\]

To do so, it is enough to show that, for \(\epsilon > 0, \delta > 0 \), we can find \(t_0 \) such that, for \(t \geq t_0 \), we have
\[\mathbb{P}\{|X| \geq (\sqrt{2} + \epsilon)t\} \leq \frac{1}{2 - \delta} \mathbb{P}\{|X| \geq t\}. \tag{2} \]

Fix \(\epsilon > 0 \). Then:

\[
\mathbb{P}\{|X + Y| \geq \sqrt{2}t\} = 2\mathbb{P}\{X + Y \geq \sqrt{2}t\} \\
\geq 2\mathbb{P}\{X \geq (\sqrt{2} + \epsilon)t, Y \geq -ct, \text{ or } Y \geq (\sqrt{2} + \epsilon)t, X \geq -ct\} \\
= 2(2\mathbb{P}\{X \geq (\sqrt{2} + \epsilon)t\} \mathbb{P}\{Y \geq -ct\} - \mathbb{P}\{X \geq (\sqrt{2} + \epsilon)t\}) \\
\geq (2 - \delta)\mathbb{P}\{|X| \geq (\sqrt{2} + \epsilon)t\},
\]

where \(\delta > 0 \) may be taken arbitrarily small for \(t \) large enough. Using (1) we obtain inequality (2).

Step 2. Let \(\alpha_1, \ldots, \alpha_n \) be real numbers such that \(\alpha_1^2 + \ldots + \alpha_n^2 \leq 1 \) and let \((X_i)_{i=1}^{\infty} \) be i.i.d. copies of \(X \); then

\[\mathbb{E}\{|\alpha_1X_1 + \ldots + \alpha_nX_n|\} \leq \sqrt{2}\mathbb{E}\{|X|\}. \]

We shall repeatedly use the following result:

Fact: Let \(S \) and \(T \) be symmetric random variables such that \(\mathbb{P}\{|S| \geq t\} \leq \mathbb{P}\{|T| \geq t\} \), for all \(t > 0 \), and let the random variable \(X \) be independent of \(S \) and \(T \). Then

\[\mathbb{E}\{|S + X|\} \leq \mathbb{E}\{|T + X|\}. \]

Indeed, for fixed \(x \in \mathbb{R} \), the function \(h(s) = \frac{|s+x|+|s-x|}{2} \) is symmetric and non-decreasing in \(s \in \mathbb{R}_+ \) and therefore

\[\mathbb{E}\{|S + x|\} = \mathbb{E}\{\frac{|S + x| + |S - x|}{2}\} \leq \mathbb{E}\{\frac{|T + x| + |T - x|}{2}\} = \mathbb{E}\{|T + x|\}. \]

Now take a sequence \(\beta_1, \ldots, \beta_n \in \{2^{-k/2} : k \in \mathbb{N}_0\} \), such that \(\alpha_i \leq \beta_i < \sqrt{2}\alpha_i \). Then \(\beta_1^2 + \ldots + \beta_n^2 \leq 2 \) and

\[\mathbb{E}\{|\alpha_1X_1 + \ldots + \alpha_nX_n|\} \leq \mathbb{E}\{|\beta_1X_1 + \ldots + \beta_nX_n|\}. \]

If there is \(i \neq j \) with \(\beta_i = \beta_j \) we may replace \(\beta_1, \ldots, \beta_n \) by \(\gamma_1, \ldots, \gamma_{n-1} \) with \(\sum_{i=1}^{n-1} \beta_i^2 = \sum_{j=1}^{n-1} \gamma_j^2 \) and

\[\mathbb{E}\{|\sum_{i=1}^{n} \beta_iX_i|\} \leq \mathbb{E}\{|\sum_{j=1}^{n-1} \gamma_jX_j|\}. \tag{3} \]

Indeed, supposing without loss of generality that \(i = n - 1 \) and \(j = n \) we let \(\gamma_i = \beta_i \), for \(i = 1, \ldots, n - 2 \) and \(\gamma_{n-1} = \sqrt{2}\beta_{n-1} = \sqrt{2}\beta_n \). With this definition we obtain (3) from (1) and the above mentioned fact.

Applying the above argument a finite number of times we end up with \(1 \leq m \leq n \) and numbers \((\gamma_j)_{j=1}^{n} \) in \(\{2^{-k/2} : k \in \mathbb{N}_0\} \), \(\gamma_i \neq \gamma_j \), for \(i \neq j \), satisfying \(\sum_{j=1}^{m} \gamma_j^2 \leq 2 \) and

\[\mathbb{E}\{|\sum_{i=1}^{n} \alpha_iX_i|\} \leq \mathbb{E}\{|\sum_{j=1}^{m} \gamma_jX_j|\}. \]
To estimate this last expression it suffices to consider the extreme case $\gamma_j = 2^{-(j-1)/2}$, for $j = 1, \ldots, m$. In this case — applying again repeatedly the argument used to obtain (3):
\[
\mathbb{E}\{|\sum_{j=1}^{m} 2^{-(j-1)/2} X_j|\} \leq \mathbb{E}\{|\sum_{j=1}^{m-1} 2^{-(j-1)/2} X_j + 2^{-(m-1)/2} X_m|\} \\
\leq \mathbb{E}\{|\sum_{j=1}^{m-2} 2^{-(j-1)/2} X_j + 2^{-(m-2)/2} X_m|\} \\
\leq \mathbb{E}\{|X_1 + X_2|\} \leq \mathbb{E}\{|\sqrt{2}X_1|\} = \sqrt{2}\mathbb{E}\{|X_1|\}.
\]

Step 3. $\mathbb{E}\{X^2\} < \infty$.
We deduce from Step 2 that for a sequence $(\alpha_i)_{i=1}^{\infty}$ with $\sum_{i=1}^{\infty} \alpha_i^2 < \infty$ the series
\[
\sum_{i=1}^{\infty} \alpha_i X_i
\]
converges in mean and therefore almost surely. Using the notation
\[
[S] = \begin{cases}
S & \text{if } |S| \leq 1, \\
\text{sign}(S) & \text{if } |S| \geq 1.
\end{cases}
\]
for a random variable S, we deduce from Kolmogorov’s three series theorem that
\[
\sum_{i=1}^{\infty} \mathbb{E}\{|\alpha_i X_i|\} < \infty.
\]
Suppose now that $\mathbb{E}\{X^2\} = \infty$; this implies that for every $C > 0$, we can find $\alpha > 0$ such that
\[
\mathbb{E}\{|\alpha X|^2\} \geq C\alpha^2.
\]
From this inequality it is straightforward to construct a sequence $(\alpha_i)_{i=1}^{\infty}$ such that
\[
\sum_{i=1}^{\infty} \mathbb{E}\{|\alpha_i X_i|\} = \infty, \text{ while } \sum_{i=1}^{\infty} \alpha_i^2 < \infty,
\]
a contradiction proving Step 3.

Step 4. Finally, we show how $\mathbb{E}\{X^2\} < \infty$ implies that X is normal. We follow the argument of Bobkov and Houdré [2].
The finiteness of the second moment implies that we must have equality in the assumption of the theorem, i.e.,
\[
\mathbb{P}\{|X+Y| \geq \sqrt{2}t\} = \mathbb{P}\{|X| \geq t\}.
\]
Indeed, assuming that there is strict inequality in (1) for some $t > 0$, we would obtain that the second moment of $X + Y$ is strictly smaller than the second moment of $\sqrt{2}X$, which leads to a contradiction:
\[
2\mathbb{E}\{X^2\} > \mathbb{E}\{(X + Y)^2\} = \mathbb{E}\{X^2\} + \mathbb{E}\{Y^2\} = 2\mathbb{E}\{X^2\}.
\]
Hence, $2^{-n/2}(X_1 + \ldots + X_{2^n})$ has the same distribution as X and we deduce from the Central Limit Theorem that X is Gaussian.
References
