ON THE CHUNG-DIACONIS-GRAHAM RANDOM PROCESS

MARTIN HILDEBRAND
Department of Mathematics and Statistics, University at Albany, State University of New York,
Albany, NY 12222 USA
email: martinhi@math.albany.edu

Submitted November 5, 2006, accepted in final form December 11, 2006

AMS 2000 Subject classification: 60B15, 60J10
Keywords: Random processes, discrete Fourier analysis

Abstract
Chung, Diaconis, and Graham considered random processes of the form $X_{n+1} = 2X_n + b_n$ (mod p) where $X_0 = 0$, p is odd, and b_n for $n = 0, 1, 2, \ldots$ are i.i.d. random variables. This process is also described in Diaconis [2], and generalizations involving random processes of the form $X_{n+1} = a_nX_n + b_n$ (mod p) where (a_i, b_i) for $i = 0, 1, 2, \ldots$ are i.i.d. were considered by the author in [3] and [4]. A question asked in [4] concerns cases where $Pr(b_n = -1) = Pr(b_n = 1) = \beta$ and $Pr(b_n = 0) = 1 - 2\beta$, they asked which value of β makes X_n get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results of Chung, Diaconis, and Graham in the case $p = 2^t - 1$ to show that for $0 < \beta \leq 1/2$, there is no such value of β.

1 Introduction

In [1], Chung, Diaconis, and Graham considered random processes of the form $X_{n+1} = 2X_n + b_n$ (mod p) where p is an odd integer, $X_0 = 0$, and b_0, b_1, b_2, \ldots are i.i.d. random variables. This process is also described in Diaconis [2], and generalizations involving random processes of the form $X_{n+1} = a_nX_n + b_n$ (mod p) where (a_i, b_i) for $i = 0, 1, 2, \ldots$ are i.i.d. were considered by the author in [3] and [4]. A question asked in [4] concerns cases where $Pr(b_n = 1) = Pr(b_n = -1) = \beta$ and $Pr(b_n = 0) = 1 - 2\beta$. If $\beta = 1/4$ or $\beta = 1/2$, then P_n is close to the uniform distribution (in variation distance) on the integers mod p if n is a large enough multiple of $\log p$ where $P_n(s) = Pr(X_n = s)$. If $\beta = 1/3$, however, for n a small enough multiple of $(\log p)\log(\log p)$, the variation distance $\|P_n - U\|$ is far from 0 for certain values of p such as $p = 2^t - 1$. Chung, Diaconis, and Graham comment “It would be interesting to know which value of β maximizes the value of N required for $\|P_N - U\| \to 0$.”

If $\beta = 0$, then $X_n = 0$ with probability 1 for all n. Thus we shall only consider the case $\beta > 0$. We shall show that unless $\beta = 1/4$ or $\beta = 1/2$, then there exists a value $c_\beta > 0$ such that for certain values of p (namely $p = 2^t - 1$), if $n \leq c_\beta (\log p)\log(\log p)$, then $\|P_n - U\| \to 1$ as $t \to \infty$. Furthermore, one can have $c_\beta \to \infty$ as $\beta \to 0^+$. Work of the author [3] shows that for each β, there is a value c_β' such that if $n \geq c_\beta'(\log p)\log(\log p)$, then $\|P_n - U\| \to 0$ as $p \to \infty$. Thus one may conclude that there is no value of β which maximizes the value of N required for $\|P_N - U\| \to 0$.

347
This paper will consider a broader class of distributions for b_n. In particular, $\Pr(b_n = 1)$ need not equal $\Pr(b_n = -1)$. The main argument here relies on a generalization of an argument in [1].

2 Notation and Main Theorem

Recall that the variation distance of a probability P on a finite group G from the uniform distribution on G is given by

$$\|P - U\| = \frac{1}{2} \sum_{s \in G} |P(s) - 1/|G||$$

$$= \max_{A \subseteq G} |P(A) - U(A)|$$

$$= \sum_{s, P(s) > 1/|G|} |P(s) - 1/|G||$$

The following assumptions are used in the main theorem. Suppose $\Pr(b_n = 1) = a$, $\Pr(b_n = 0) = b$, and $\Pr(b_n = -1) = c$. We assume $a + b + c = 1$ and a, b, and c are all less than 1. Suppose b_0, b_1, b_2, \ldots are i.i.d. and $X_0 = 0$. Suppose $X_{n+1} = 2X_n + b_n \pmod{p}$ and p is odd. Let $P_n(s) = \Pr(X_n = s)$. The theorem itself follows:

Theorem 1 Case 1: Suppose either $b = 0$ and $a = c = 1/2$ or $b = 1/2$. If $n > c_1 \log_2 p$ where $c_1 > 1$ is constant, then $\|P_n - U\| \to 0$ as $p \to \infty$ where p is an odd integer.

Case 2: Suppose a, b, and c do not satisfy the conditions in Case 1. Then there exists a value c_2 (depending on a, b, and c) such that if $n < c_2 (\log p) \log(\log p)$ and $p = 2^t - 1$, then $\|P_n - U\| \to 1$ as $t \to \infty$.

3 Proof of Case 1

First let’s consider the case where $b = 1/2$. Then $b_n = e_n + d_n$ where e_n and d_n are independent random variables with $\Pr(e_n = 0) = \Pr(e_n = 1) = 1/2$, $\Pr(d_n = -1) = 2c$, and $\Pr(d_n = 0) = 2a$. (Note that here $a + c = 1/2 = b$. Thus $2a + 2c = 1$.) Observe that

$$X_n = \sum_{j=0}^{n-1} 2^{n-1-j} b_j \pmod{p}$$

$$= \sum_{j=0}^{n-1} 2^{n-1-j} e_j + \sum_{j=0}^{n-1} 2^{n-1-j} d_j \pmod{p}$$

Let

$$Y_n = \sum_{j=0}^{n-1} 2^{n-1-j} e_j \pmod{p}.$$

If P_n is the probability distribution of X_n (i.e. $P_n(s) = \Pr(X_n = s)$) and Q_n is the probability distribution of Y_n, then the independence of e_n and d_n implies $\|P_n - U\| \leq \|Q_n - U\|$. Observe
that on the integers, \(\sum_{j=0}^{n-1} 2^{n-1-j} e_j \) is uniformly distributed on the set \(\{0, 1, \ldots, 2^n - 1\} \).
Each element of the integers mod \(p \) appears either \([2^n/p]\) times or \([2^n/p]\) times. Thus

\[
\|Q_n - U\| \leq p \left(\frac{[2^n/p]}{2^n} - \frac{1}{p} \right) \leq \frac{p}{2^n}.
\]

If \(n > c_1 \log_2 p \) where \(c_1 > 1 \), then \(2^n > p^{c_1} \) and \(\|Q_n - U\| \leq 1/p^{c_1-1} \to 0 \) as \(p \to \infty \).

The case where \(b = 0 \) and \(a = c = 1/2 \) is alluded to in [1] and left as an exercise. \(\square \)

4 Proof of Case 2

The proof of this case follows the proof of Theorem 2 in [1] with some modifications.
Define, as in [1], the separating function \(f : \mathbb{Z}/p\mathbb{Z} \to \mathbb{C} \) by

\[
f(k) := \sum_{j=0}^{t-1} q^{k2^j}
\]

where \(q := q(p) := e^{2\pi i/p} \). We shall suppose \(n = rt \) where \(r \) is an integer of the form \(r = \delta \log t - d \) for a fixed value \(\delta \).
If \(0 \leq j \leq t-1 \), define

\[
\Pi_j := \prod_{\alpha=0}^{t-1} \left(aq^{2\alpha(2^j-1)} + b + cq^{-2\alpha(2^j-1)} \right).
\]

Note that if \(a = b = c = 1/3 \), then this expression is the same as \(\Pi_j \) defined in the proof of Theorem 2 in [1].
As in the proof of Theorem 2 in [1], \(E_U(f) = 0 \) and \(E_U(f^\top f) = t \). Furthermore

\[
E_{P_n}(f) = \sum_k P_n(k) f(k) = \sum_k \sum_{j=0}^{t-1} P_n(k) q^{k2^j} = \sum_{j=0}^{t-1} \hat{P}_n(2^j) = \sum_{j=0}^{t-1} \prod_{\alpha=0}^{t-1} \left(aq^{2\alpha2^j/p} + b + cq^{-2\alpha2^j/p} \right) = t\Pi_t.
\]
Also note
\[
E_{P_n}(f\bar{f}) = \sum_k P_n(k)f(k)\bar{f}(k)
\]
\[
= \sum_k \sum_{j,j'} P_n(k)q^{k(2^j-2^{j'})}
\]
\[
= \sum_{j,j'} \hat{P}_n(2^j-2^{j'})
\]
\[
= \sum_{j,j'} t^{\frac{t-1}{j_0}} \left(aq^{2^{2t}(2^j-2^{j'})} + b + cq^{-2^t(2^j-2^{j'})}\right)^r
\]
\[
= t^{\frac{t-1}{j_0}} \prod_{j=0}^{t-1} \Pi_j^r.
\]

(Note that the expressions for \(E_{P_n}(f)\) and \(E_{P_n}(f\bar{f})\) in the proof of Theorem 2 of [1] have some minor misprints.)

The (complex) variances of \(f\) under \(U\) and \(P_n\) are \(\text{Var}_U(f) = t\) and
\[
\text{Var}_{P_n}(f) = E_{P_n}(|f - E_{P_n}(f)|^2)
\]
\[
= E_{P_n}(f\bar{f}) - E_{P_n}(f)E_{P_n}(\bar{f})
\]
\[
= t^{\frac{t-1}{j_0}} \prod_{j=0}^{t-1} \Pi_j^r - t^2 |\Pi_1|^{2r}.
\]

Like [1], we use the following complex form of Chebyshev’s inequality for any \(Q\):
\[
Q \left(\left\{ x : |f(x) - E_Q(f)| \geq \alpha \sqrt{\text{Var}_Q(f)} \right\} \right) \leq 1/\alpha^2
\]
where \(\alpha > 0\). Thus
\[
U \left(\left\{ x : |f(x)| \geq \alpha t^{1/2} \right\} \right) \leq 1/\alpha^2
\]
and
\[
P_n \left(\left\{ x : |f(x) - t|\Pi_1| \geq \beta \left(t^{\frac{t-1}{j_0}} \prod_{j=0}^{t-1} \Pi_j^r - t^2 |\Pi_1|^{2r} \right)^{1/2} \right\} \right) \leq 1/\beta^2.
\]

Let \(A\) and \(B\) denote the complements of these 2 sets; thus \(U(A) \geq 1 - 1/\alpha^2\) and \(P_n(B) \geq 1 - 1/\beta^2\). If \(A\) and \(B\) are disjoint, then \(|P_n - U| \geq 1 - 1/\alpha^2 - 1/\beta^2\).

Suppose \(r\) is an integer with
\[
r = \frac{\log t}{2 \log(1/|\Pi_1|)} - \lambda
\]
where \(\lambda \to \infty\) as \(t \to \infty\) but \(\lambda \ll \log t\). Then \(t|\Pi_1|^r = t^{1/2}|\Pi_1|^{-\lambda} \gg t^{1/2}\). Observe that the fact \(a, b,\) and \(c\) do not satisfy the conditions in Case 1 implies \(|\Pi_1|\) is bounded away from 0 as \(t \to \infty\). Furthermore \(|\Pi_1|\) is bounded away from 1 for a given \(a, b,\) and \(c\).

In contrast, let’s consider what happens to \(|\Pi_1|\) if \(a, b,\) and \(c\) do satisfy the condition in Case 1. If \(b = 1/2\), then the \(\alpha = t - 1\) term in the definition of \(\Pi_1\) converges to 0 as \(t \to \infty\) and thus
Chung-Diaconis-Graham random process

\(\Pi_1 \) also converges to 0 as \(t \to \infty \) since each other term has length at most 1. If \(a = c = 1/2 \) and \(b = 0 \), then the \(\alpha = t - 2 \) term in the definition of \(\Pi_1 \) converges to 0 as \(t \to \infty \) and thus \(\Pi_1 \) also converges to 0 as \(t \to \infty \).

Claim 1

\[
\lim_{t \to \infty} \frac{1}{t} t \sum_{j=0}^{t-1} \left(\frac{\Pi_j}{|\Pi_1|^2} \right)^r = 1
\]

as \(t \to \infty \).

Note that this claim implies \((\text{Var}_{P_n}(f))^{1/2} = o(\text{E}_{P_n}(f)) \) and thus Case 2 of Theorem 1 follows.

Note that \(\Pi_0 = 1 \). By Proposition 1 below, \(\Pi_j = \Pi_{t-j} \). Thus \(t \sum_{j=0}^{t-1} \Pi_j \) is real. Also note that since \(\text{Var}_{P_n}(f) \geq 0 \), we have

\[
\frac{t \sum_{j=0}^{t-1} \Pi_j}{t^2|\Pi_1|^{2r}} \geq 1.
\]

Thus to prove the claim, it suffices to show

\[
\lim_{t \to \infty} \frac{1}{t} t \sum_{j=0}^{t-1} \left(\frac{|\Pi_j|}{|\Pi_1|^2} \right)^r = 1.
\]

Proposition 1 \(\Pi_j = \Pi_{t-j} \).

Proof: Note that

\[
\Pi_j = \prod_{\alpha=0}^{t-1} \left(aq^{-(2^\alpha(2^j-1))} + b + cq^{2^\alpha(2^j-1))} \right)
\]

and

\[
\Pi_{t-j} = \prod_{\beta=0}^{t-1} \left(aq^{2^\beta(2^{t-j}-1))} + b + cq^{-2^\beta(2^{t-j}-1))} \right).
\]

If \(j \leq \beta \leq t-1 \), then note

\[
2^\beta(2^{t-j} - 1) = 2^{\beta-j}(2^t - 2^j)
\]

\[
= 2^{\beta-j}(1 - 2^j) \pmod{p}
\]

\[
= -2^{\beta-j}(2^j - 1).
\]

Thus the terms in \(\Pi_{t-j} \) with \(j \leq \beta \leq t-1 \) are equal to the terms in \(\Pi_j \) with \(0 \leq \alpha \leq t - j - 1 \). If \(0 \leq \beta \leq j-1 \), then note

\[
2^{\beta}(2^{t-j} - 1) = 2^{t+\beta}(2^{t-j} - 1) \pmod{p}
\]

\[
= 2^{t+\beta-j}(2^t - 2^j)
\]

\[
= 2^{t+\beta-j}(1 - 2^j) \pmod{p}
\]

\[
= -2^{t+\beta-j}(2^j - 1).
\]

Thus the terms in \(\Pi_{t-j} \) with \(0 \leq \beta \leq j-1 \) are equal to the terms in \(\Pi_j \) with \(t - j \leq \alpha \leq t - 1 \). \(\square \)
Now let’s prove the claim. Let \(G(x) = |ae^{2\pi i x} + b + ce^{-2\pi i x}|. \) Thus
\[
|\Pi_j| = \prod_{\alpha=0}^{t-1} G(2^{\alpha}(2^j - 1)/p).
\]
Note that if \(0 \leq x < y \leq 1/4, \) then \(G(x) > G(y). \) On the interval \([1/4, 1/2],\) where \(G \) increases and where \(G \) decreases depends on \(a, b, \) and \(c.\)

We shall prove a couple of facts analogous to facts in [1].

Fact 1: There exists a value \(t_0 \) (possibly depending on \(a, b, \) and \(c) \) such that if \(t > t_0, \) then \(|\Pi_j| \leq |\Pi_1| \) for all \(j \geq 1.\)

Since \(G(x) = G(1 - x), \) in proving this fact we may assume without loss of generality that \(2 \leq j \leq t/2.\) Note that
\[
|\Pi_j| = \prod_{i=0}^{t-j-1} G\left(\frac{2^{t+j} - 2^i}{p}\right)\prod_{i=0}^{j-1} G\left(\frac{2^{i+t} - 2^i}{p}\right).
\]

We associate factors \(x \) from \(|\Pi_j| \) with corresponding factors \(\pi(x) \) of \(|\Pi_1| \) in a manner similar to that in [1]. For \(0 \leq i \leq t - j - 2, \) associate \(G((2^{i+j} - 2^i)/p) \) with \(G(2^{i+j-1}/p). \) Note that for \(0 \leq i \leq t - j - 2, \) we have \(G((2^{i+j} - 2^i)/p) \leq G(2^{i+j-1}/p). \) For \(0 \leq i \leq j - 3, \) associate \(G((2^{i+j} - 2^i)/p) \) in \(|\Pi_j| \) with \(G(2^i/p) \) in \(|\Pi_1| \). Note that for \(0 \leq i \leq j - 3, \) we have \(G((2^{i+j} - 2^i)/p) \leq G(2^i/p). \)

The remaining terms in \(|\Pi_j| \) are
\[
G\left(\frac{2^{t-1} - 2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1} - 2^{j-1}}{p}\right) G\left(\frac{2^{t-2} - 2^{j-2}}{p}\right)
\]
and the remaining terms in \(|\Pi_1| \) are
\[
G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right).
\]

It can be shown that
\[
\lim_{t \to \infty} \frac{G\left(\frac{2^{t-1} - 2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1} - 2^{j-1}}{p}\right) G\left(\frac{2^{t-2} - 2^{j-2}}{p}\right)}{G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right)} = \frac{G(1/2)}{G(0)} < 1.
\]

Indeed, for some \(t_0, \) if \(t > t_0 \) and \(2 \leq j \leq t/2, \)
\[
G\left(\frac{2^{t-1} - 2^{t-j-1}}{p}\right) G\left(\frac{2^{t-1} - 2^{j-1}}{p}\right) G\left(\frac{2^{t-2} - 2^{j-2}}{p}\right)
\leq G\left(\frac{2^{t-1}}{p}\right) G\left(\frac{2^{t-2}}{p}\right) G\left(\frac{2^{j-2}}{p}\right).
\]

Fact 2: There exists a value \(t_1 \) (possibly depending on \(a, b, \) and \(c) \) such that if \(t > t_1, \) then the following holds. There is a constant \(c_0 \) such that for \(t^{1/3} \leq j \leq t/2, \) we have
\[
\frac{|\Pi_j|}{|\Pi_1|^2} \leq 1 + \frac{c_0}{2}.
\]

□
To prove this fact, we associate, for \(i = 0, 1, \ldots, j - 1 \), the terms

\[
G \left(\frac{2^{t-i-1} - 2^{j-i-1}}{p} \right) G \left(\frac{2^{t-i-1} - 2^{t-j-i-1}}{p} \right)
\]

in \(|\Pi_j|\) with the terms

\[
\left(G \left(\frac{2^{i-1}}{p} \right) \right)^2
\]

in \(|\Pi_1|^2\). Suppose \(A = \max |G'(x)|. \) Note that \(A < \infty \). Then

\[
\left| G \left(\frac{2^{t-i-1} - 2^{j-i-1}}{p} \right) \right| \leq \left| G \left(\frac{2^{i-1}}{p} \right) \right| + A \frac{2^{t-i-1}}{p}
\]

Thus

\[
\frac{\left| G \left(\frac{2^{t-i-1} - 2^{j-i-1}}{p} \right) \right|}{\left| G \left(\frac{2^{i-1}}{p} \right) \right|} \leq 1 + A \frac{2^{t-i-1}}{p \left| G \left(\frac{2^{i-1}}{p} \right) \right|}.
\]

Likewise

\[
\frac{\left| G \left(\frac{2^{t-i-1} - 2^{t-j-i-1}}{p} \right) \right|}{\left| G \left(\frac{2^{i-1}}{p} \right) \right|} \leq 1 + A \frac{2^{t-j-i-1}}{p \left| G \left(\frac{2^{i-1}}{p} \right) \right|}.
\]

Since we do not have the conditions for Case 1, there is a positive value \(B \) and value \(t_2 \) such that if \(t > t_2, \) then \(|G(2^{t-i-1}/p)| > B \) for all \(i \) with \(0 \leq i \leq j - 1. \) By an exercise, one can verify

\[
\prod_{i=0}^{j-1} \left| \frac{G \left(\frac{2^{t-i-1} - 2^{j-i-1}}{p} \right) G \left(\frac{2^{t-i-1} - 2^{t-j-i-1}}{p} \right)}{\left| G \left(\frac{2^{i-1}}{p} \right) \right|^2} \right| \leq 1 + \frac{c_3}{2^j}
\]

for some value \(c_3 \) not depending on \(j \).

Note that the remaining terms in \(|\Pi_j|\) all have length less than 1. The remaining terms in \(|\Pi_1|^2\) are

\[
\prod_{i=j}^{t-1} \left| G \left(\frac{2^{t-i-1}}{p} \right) \right|^2.
\]

Since \(G'(0) = 0, \) there are positive constants \(c_4 \) and \(c_5 \) such that

\[
\left| G \left(\frac{2^{t-i-1}}{p} \right) \right| \geq 1 - c_4 \left(\frac{2^{t-i-1}}{p} \right)^2 \geq \exp \left(-c_5 \frac{2^{t-i-1}}{p} \right)
\]
for $i \geq j \geq t^{1/3}$. Observe
\[
\prod_{i=j}^{t-1} \exp \left(-c_5 \frac{2^{i-1} - 1}{p} \right) = \exp \left(-c_5 \sum_{i=j}^{t-1} 2^{i-1}/p \right)
\]
\[
= \exp \left(-c_5 \sum_{k=0}^{t-j-1} 2^k/p \right)
\]
\[
> \exp \left(-c_5 \frac{2^{t-j} - 1}{2^t - 1} \right)
\]
\[
= \exp(-c_5/2^j) > 1 - c_5/2^j.
\]

There exists a constant c_0 such that
\[
\frac{1 + c_3/2^j}{(1 - c_5/2^j)^2} \leq 1 + c_0/2^j
\]
for $j \geq 1$.

Thus, as in Π, we have
\[
\sum_{t^{1/3} \leq j \leq t/2} \left| \left(\frac{||\Pi_j||}{||\Pi_1||} \right)^r - 1 \right| \leq \frac{c_6 t r}{2^{2t^3}} < \frac{c_7}{2^{2t^3}}
\]
for values c_6 and c_7. Since $||\Pi_j|| = ||\Pi_{t-j}||$, we have
\[
\frac{1}{t} \sum_{j=0}^{t-1} \left(\frac{||\Pi_j||}{||\Pi_1||^2} \right)^r \leq \frac{1}{t} \frac{1}{||\Pi_1||^{2r}} + \frac{2}{t} \left(\sum_{1 \leq j < t^{1/3}} \left(\frac{||\Pi_j||}{||\Pi_1||^2} \right)^r + \sum_{t^{1/3} \leq j \leq t/2} \left(\frac{||\Pi_j||}{||\Pi_1||^2} \right)^r \right)
\]
\[
= 1 + o(1)
\]
as $t \to \infty$. Thus Fact 2, the claim, and Theorem are proved. □

The next proposition considers what happens as we vary the values a, b, and c.

Proposition 2 If $a = c = \beta$ and $b = 1 - 2\beta$ and $m_\beta = \liminf_{t \to \infty} ||\Pi_t||$, then $\lim_{\beta \to 0^+} m_\beta = 1$.

Proof: Suppose $\beta < 1/4$. Then
\[
\Pi_1 = \prod_{\alpha=0}^{t-1} \left((1 - 2\beta) + 2\beta \cos(2\pi 2^\alpha/p) \right).
\]
Let $h(\alpha) = (1 - 2\beta) + 2\beta \cos(2\pi 2^\alpha/p)$. Note that
\[
\lim_{\beta \to 0^+} h(t-1) = 1
\]
\[
\lim_{\beta \to 0^+} h(t-2) = 1
\]
\[
\lim_{\beta \to 0^+} h(t-3) = 1
\]
Furthermore, for some constant $\gamma > 0$, one can show

$$h(\alpha) > \exp(-\beta\gamma(2^\alpha/p)^2)$$

if $2^\alpha/p \leq 1/8$ and $0 < \beta < 1/10$. So

$$\prod_{\alpha=0}^{t-4} h(\alpha) > \prod_{\alpha=0}^{t-4} \exp(-\beta\gamma(2^\alpha/p)^2)$$

$$= \exp\left(-\beta\gamma \sum_{\alpha=0}^{t-4} (2^\alpha/p)^2\right)$$

$$> \exp(-\beta\gamma 2^{(t-4)(4/3)/p}) \to 1$$

as $\beta \to 0^+$. \[\square\]

Recalling that

$$r = \frac{\log t}{2 \log(1/|\Pi_1|)} - \lambda,$$

we see that $1/(2 \log(1/|\Pi_1|))$ can be made arbitrarily large by choosing β small enough. Thus there exist values $c_\beta \to \infty$ as $\beta \to 0^+$ such that if $n \leq c_\beta (\log p) \log(\log p)$, then $\|P_n - U\| \to 1$ as $t \to \infty$.

5 Problems for further study

One possible problem is to see if in some sense, there is a value of β on $[1/4, 1/2]$ which maximizes the value of N required for $\|P_N - U\| \to 0$; to consider such a question, one might restrict p to values such that $p = 2^t - 1$.

Another possible question considers the behavior of these random processes for almost all odd p. For $\beta = 1/3$, Chung, Diaconis, and Graham showed that a multiple of $\log p$ steps suffice for almost all odd p. While their arguments should be adaptable with the change of appropriate constants to a broad range of choices of a, b, and c in Case 2, a more challenging question is to determine for which a, b, and c in Case 2 (if any), $(1 + o(1)) \log_2 p$ steps suffice for almost all odd p.

6 Acknowledgments

The author thanks Ron Graham for mentioning the problem at a January, 2005, conference on the Mathematics of Persi Diaconis. The author also thanks Robin Pemantle for a conversation on the topic and the participants in the Probability and Related Fields Seminar at the University at Albany for listening to some ideas on the problem.

References

