DEVIATION INEQUALITIES AND MODERATE DEVIATIONS FOR
ESTIMATORS OF PARAMETERS IN AN ORNSTEIN-UHLENBECK
PROCESS WITH LINEAR DRIFT

FUQING GAO
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, PR.China
email: fqgao@whu.edu.cn

HUI JIANG
School of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR.China
email: huijiang@nuaa.edu.cn

Submitted December 29, 2008, accepted in final form April 21, 2009

AMS 2000 Subject classification: 60F12, 62F12, 62N02
Keywords: Deviation inequality, logarithmic Sobolev inequality, moderate deviations, Ornstein-Uhlenbeck process

Abstract
Some deviation inequalities and moderate deviation principles for the maximum likelihood estimators of parameters in an Ornstein-Uhlenbeck process with linear drift are established by the logarithmic Sobolev inequality and the exponential martingale method.

1 Introduction and main results
1.1 Introduction
We consider the following Ornstein-Uhlenbeck process

\[dX_t = (-\theta X_t + \gamma) dt + dW_t, \quad X_0 = x \] \hspace{1cm} (1.1)

where \(W \) is a standard Brownian motion and \(\theta, \gamma \) are unknown parameters with \(\theta \in (0, +\infty) \). We denote by \(P_{\theta,\gamma,x} \) the distribution of the solution of (1.1).

It is known that the maximum likelihood estimators (MLE) of the parameters \(\theta \) and \(\gamma \) are (cf.

\(^1\)RESEARCH SUPPORTED BY THE NATIONAL NATURAL SCIENCE FOUNDATION OF CHINA (10871153)
Deviation inequalities and MDP for estimators in OU model

[15]

\[
\hat{\theta}_T = \frac{-T \int_0^T X_t dX_t + (X_T - x) \int_0^T X_t dt}{T \int_0^T X_t^2 dt - \left(\int_0^T X_t dt \right)^2}
\]
(1.2)

\[
= \theta + \frac{W_T \hat{\mu}_T - \int_0^T X_t dW_t}{T \hat{\sigma}_T^2},
\]

\[
\hat{\gamma}_T = \frac{-\int_0^T X_t dX_t \int_0^T X_t dX_t + (X_T - x) \int_0^T X_t^2 dt}{T \int_0^T X_t^2 dt - \left(\int_0^T X_t dt \right)^2}
\]
(1.3)

\[
= \gamma + \frac{W_T \hat{\mu}_T - \int_0^T X_t dW_t}{T \hat{\sigma}_T^2},
\]

where

\[
\hat{\mu}_T = \frac{1}{T} \int_0^T X_t dt, \quad \hat{\sigma}_T^2 = \frac{1}{T} \int_0^T X_t^2 dt - \hat{\mu}_T^2.
\]
(1.4)

It is known that \(\hat{\theta}_T \) and \(\hat{\gamma}_T \) are consistent estimators of \(\theta \) and \(\gamma \) and have asymptotic normality (cf. [15]).

For \(\gamma = 0 \) case, Florens-Landais and Pham ([9]) calculated the Laplace functional of \(\int_0^T X_t dX_t, \int_0^T X_t^2 dt \) by Girsanov's formula and obtained large deviations for \(\hat{\theta}_T \) by Gärtner-Ellis theorem. Bercu and Rouault ([11]) presented a sharp large deviation for \(\hat{\theta}_T \). Lezaud ([14]) obtained the deviation inequality of quadratic functional of the classical OU processes. We refer to [8] and [11] for the moderate deviations of some non-linear functionals of moving average processes and diffusion processes. In this paper we use the logarithmic Sobolev inequality (LSI) to study the deviation inequalities and the moderate deviations of \(\hat{\theta}_T \) and \(\hat{\gamma}_T \) for \(\gamma \neq 0 \) case.

1.2 Main results

Throughout this paper, let \(\lambda_T, T \geq 1 \) be a positive sequence satisfying

\[
\lambda_T \to \infty, \quad \frac{\lambda_T}{\sqrt{T}} \to 0.
\]
(1.5)

Theorem 1.1. There exist finite positive constants \(C_0, C_1, C_2 \) and \(C_3 \) such that for all \(r > 0 \) and all \(T \geq 1 \),

\[
P_{\theta, T, x} \left(|\hat{\theta}_T - \theta| \geq r \right) \leq C_0 \exp \left\{ -C_1 r T E_{\theta, T, x} \left(\hat{\sigma}_T^2 \right) \min \{ 1, C_2 r \} \right\}
\]

\[
+ C_0 \exp \left\{ -C_3 T E_{\theta, T, x} \left(\hat{\sigma}_T^2 \right) \right\}
\]

and

\[
P_{\theta, T, x} \left(|\hat{\gamma}_T - \gamma| \geq r \right) \leq C_0 \exp \left\{ -C_1 r T E_{\theta, T, x} \left(\hat{\sigma}_T^2 \right) \min \{ 1, C_2 r \} \right\}
\]

\[
+ C_0 \exp \left\{ -C_3 T E_{\theta, T, x} \left(\hat{\sigma}_T^2 \right) \right\}.
\]

Remark 1.1. In this theorem and the remainder of the paper, all the constants involved depend on \(\theta, \gamma \) and the initial point \(x \).
Theorem 1.2. (1) \(\left\{ P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\theta}_T - \theta) \in \cdot \right), T \geq 1 \right\} \) satisfies the large deviation principle with speed \(\lambda_T \) and rate function \(I_1(u) = \frac{u^2}{4\theta} \), that is, for any closed set \(F \) in \(\mathbb{R} \),

\[
\limsup_{n \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\theta}_T - \theta) \in F \right) \leq -\inf_{u \in F} \frac{u^2}{4\theta},
\]

and open set \(G \) in \(\mathbb{R} \),

\[
\liminf_{n \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\theta}_T - \theta) \in G \right) \geq -\inf_{u \in G} \frac{u^2}{4\theta}.
\]

(2) \(\left\{ P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\gamma}_T - \gamma) \in \cdot \right), T \geq 1 \right\} \) satisfies the large deviation principle with speed \(\lambda_T \) and rate function \(I_2(u) = \frac{\theta u^2}{2(\theta + 2\gamma^2)} \), that is, for any closed set \(F \) in \(\mathbb{R} \),

\[
\limsup_{n \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\gamma}_T - \gamma) \in F \right) \leq -\inf_{u \in F} \frac{\theta u^2}{2(\theta + 2\gamma^2)},
\]

and open set \(G \) in \(\mathbb{R} \),

\[
\liminf_{n \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\sqrt{\frac{T}{\lambda_T}} (\hat{\gamma}_T - \gamma) \in G \right) \geq -\inf_{u \in G} \frac{\theta u^2}{2(\theta + 2\gamma^2)}.
\]

In \(\gamma = 0 \) case, the deviation inequalities of quadratic functionals of the classical OU process are obtained in [14]. For the large deviations and the moderate deviations of \(\hat{\theta}_T \), we refer to [1], [9] and [11]. The proofs of Theorem 1.1 and Theorem 1.2 are based on the LSI with respect to \(L^2 \)-norm in the Wiener space and Herbst’s argument (cf. [10], [12]).

2 Deviation inequalities

In this section, we give some deviation inequalities for the estimators \(\hat{\theta}_T \) and \(\hat{\gamma}_T \) by the logarithmic Sobolev inequality and the exponential martingale method. For deviation bounds for additive functionals of Markov processes, we refer to [3] and [18].

2.1 Moments

It is known that the solution of equation (1.1) has the following expression:

\[
X_t = \left(x - \frac{\gamma}{\theta} \right) e^{-\theta t} + \frac{\gamma}{\theta} + e^{-\theta t} \int_0^t e^{\theta s} dW_s. \tag{2.1}
\]

From this expression, it is easily seen that for any \(t \geq 0 \),

\[
\mu_t := E_{\theta, \gamma, x}(X_t) = \left(x - \frac{\gamma}{\theta} \right) e^{-\theta t} + \frac{\gamma}{\theta}, \tag{2.2}
\]

\[
\sigma^2_t := \text{Var}_{\theta, \gamma, x}(X_t) = \frac{1}{2\theta} (1 - e^{-2\theta t}) \tag{2.3}
\]
and for any $0 \leq s \leq t$,
\[\text{Cov}_{\theta,\gamma,x}(X_s, X_t) = \frac{1}{2\theta} (1 - e^{-2\theta s}) e^{-\theta (t-s)}. \] (2.4)

Therefore
\[E_{\theta,\gamma,x}(\hat{\alpha}_T) = \frac{1}{T} E_{\theta,\gamma,x} \left(\int_0^T X_t \, dt \right) = \frac{1}{2\theta T} \left(x - \frac{\gamma}{\theta} \right) (1 - e^{-\theta T}) + \frac{\gamma}{\theta}, \] (2.5)

\[\text{Var}_{\theta,\gamma,x}(\hat{\mu}_T) = \frac{1}{T^2} E_{\theta,\gamma,x} \left(\left(\int_0^T e^{-\theta t} \int_0^t e^{\theta s} dW_s \, dt \right)^2 \right) \] (2.6)

\[= \frac{1}{\theta^2 T^2} \left(T - \frac{1}{2\theta} (e^{-\theta T} - 1) + \frac{2}{\theta} (e^{-\theta T} - 1) \right) \]

and so for all $T \geq 1$,
\[\text{Var}_{\theta,\gamma,x}(\hat{\mu}_T) \leq \frac{1}{2\theta^3 T} (2\theta + 1) \] (2.7)

and
\[E_{\theta,\gamma,x}(\hat{\sigma}_T^2) = \frac{1}{2\theta} + \frac{1}{4\theta^2 T} (1 - e^{-2\theta T}) \left(-1 + 2\theta \left(x - \frac{\gamma}{\theta} \right)^2 \right) \]

\[- \frac{1}{\theta^2 T^2} (1 - e^{-\theta T})^2 \left(x - \frac{\gamma}{\theta} \right)^2 (1 - e^{-\theta T}) \]

\[- \frac{1}{\theta^2 T^2} \left(T - \frac{1}{2\theta} (e^{-\theta T} - 1) + \frac{2}{\theta} (e^{-\theta T} - 1) \right) \]

which implies
\[\left| E_{\theta,\gamma,x}(\hat{\sigma}_T^2) - \frac{1}{2\theta} \right| \leq \frac{1}{\theta^2 T} \left(\theta \left(x - \frac{\gamma}{\theta} \right)^2 + \frac{2}{\theta} \right). \] (2.8)

Lemma 2.1. For any $0 \leq \alpha \leq \theta^2/4$, for all $T \geq 1$,
\[E_{\theta,\gamma,x} \left(\exp \left(\alpha \int_0^T X_t^2 \, dt \right) \right) < \infty, \]

and there exist finite positive constants L_1 and L_2 such that for all $0 \leq \alpha \leq \theta^2/4$ and $T \geq 1$,
\[E_{\theta,\gamma,x} \left(\exp \left(\alpha \int_0^T X_t^2 \, dt \right) \right) \leq L_1 e^{L_2 \alpha T}. \]

Proof. For any $0 \leq \alpha \leq \theta^2/4$, set $\kappa = \sqrt{\theta^2 - 2\alpha}$. Then by Girsanov theorem, we have
\[\frac{dP_{\theta,\gamma,x}}{dP_{\kappa,\gamma,x}} = \exp \left\{ - \int_0^T (\theta - \kappa) X_t dX_t - \int_0^T (\alpha X_t^2 - \gamma(\theta - \kappa) X_t) dt \right\} \]
and so
\[
E_{\theta,T,x}\left(\exp\left(\alpha \int_0^T X_t^2 dt\right)\right)
\]
\[= E_{\kappa,T,x}\left(\frac{dP_{\theta,T,x}}{dP_{\kappa,T,x}} \exp\left(\alpha \int_0^T X_t^2 dt\right)\right)
\]
\[= E_{\kappa,T,x}\left(\exp\left(-\theta + \kappa\right) \int_0^T X_t dX_t + \gamma \int_0^T (\theta - \kappa) X_t dt\right)
\]
\[= E_{\kappa,T,x}\left(\exp\left(-\frac{(\theta - \kappa)}{2}\left(X_T^2 - T\right) + \gamma \int_0^T (\theta - \kappa) X_t dt\right)\right)
\]
\[\leq \exp\left(\frac{(\theta - \kappa)T}{2}\right) E_{\kappa,T,x}\left(\exp\left(\gamma \int_0^T (\theta - \kappa) X_t dt\right)\right)
\]
where the last inequality is due to \(\theta \geq \kappa\). Now we have to estimate \(E_{\kappa,T,x}(\exp\{\gamma \int_0^T (\theta - \kappa) X_t dt\})\).
Since under \(P_{\kappa,T,x}\),
\[
\bar{\mu}_T \sim N\left(\frac{1}{\kappa T}(x - \frac{\gamma}{\kappa}(1 - e^{-\kappa T}) + \frac{\gamma}{\kappa}) T - \frac{1}{2\kappa}(e^{-2\kappa T} - 1) + \frac{\gamma}{\kappa} e^{-\kappa T} - 1\right),
\]
we have
\[
E_{\kappa,T,x}\left(\exp\left(\frac{\gamma (\theta - \kappa)}{\kappa} \left(\left(x - \frac{\gamma}{\kappa}\right) (1 - e^{-\kappa T}) + \gamma T\right)\right)\right)
\]
\[= \exp\left(\frac{\gamma (\theta - \kappa)}{\kappa} \left(\left(x - \frac{\gamma}{\kappa}\right) (1 - e^{-\kappa T}) + \gamma T\right)\right)
\]
\[\cdot \exp\left(-\frac{\gamma^2 (\theta - \kappa)^2}{2\kappa^2} \left(T - \frac{1}{2\kappa}(e^{-2\kappa T} - 1) + \frac{\gamma}{\kappa} e^{-\kappa T} - 1\right)\right).
\]
Noting \(\theta / \sqrt{2} \leq \kappa \leq \theta, 0 \leq \theta - \kappa = 2\alpha/(\theta + \kappa) \leq 2\alpha/\theta\) and \((\theta - \kappa)^2 \leq \alpha \theta\) for all \(0 \leq \alpha \leq \theta^2/4\),
we complete the proof of the lemma.

\[\square\]

2.2 Logarithmic Sobolev inequality

Since the LSI with respect to the Cameron-Martin metric does not produce the concentration inequality of correct order in large time \(T\) for the functionals
\[
F(X) := \frac{1}{\sqrt{T}} \left(\int_0^T g(X_s) ds - \mathbb{E}\left(\int_0^T g(X_s) ds\right)\right),
\]
in order to get the concentration inequality of correct order for the functionals \(F(X)_n\), as pointed out by Djellout, Guillin and Wu (\cite{71}) we should establish the LSI with respect to the \(L^2\)-metric.
Let us introduce the logarithmic Sobolev inequality on \(W\) with respect to the gradient in \(L^2([0,T],\mathbb{R})\) (\cite{10}). Let \(\mu\) be the Wiener measure on \(W = C([0,T],\mathbb{R})\). A function \(f : W \to \mathbb{R}\) is said to be
differentiable with respect to the L^2-norm, if it can be extend to $L^2([0, T], \mathbb{R})$ and for any $w \in W$, there exists a bounded linear operator $Df(w) : g \to D_g f(w)$ on $L^2([0, T], \mathbb{R})$ such that

$$\lim_{\|g\|_2 \to 0} \frac{|f(w + g) - f(w) - D_g f(w)|}{\|g\|_2} = 0.$$

If $f : W \to \mathbb{R}$ is differentiable with respect to the L^2-norm, then there exists a unique element $\nabla f(w) = (\nabla_i f(w), t \in [0, T])$ in $L^2([0, T], \mathbb{R})$ such that

$$D_g f(w) = (\nabla f(w), g)_{L^2}, \text{ for all } g \in L^2([0, T], \mathbb{R}).$$

Denote by $C_b^1(W/L^2)$ the space of all bounded function f on W, differentiable with respect to the L^2-norm, such that ∇f is also continuous and bounded from W equipped with L^2-norm to $L^2([0, T], \mathbb{R})$. Applying Theorem 2.3 in [10] to the Ornstein-Uhlenbeck process with linear drift, we have

$$\text{Ent}_{\theta, \gamma, x}(f^2) \leq \frac{2}{\theta^2} E_{\theta, \gamma, x} \left(\int_0^T |\nabla_i f|^2 dt \right), \quad f \in C_b^1(W/L^2) \quad (2.9)$$

where the entropy of f^2 is given by

$$\text{Ent}_{\theta, \gamma, x}(f^2) = E_{\theta, \gamma, x}(f^2 \log f^2) - E_{\theta, \gamma, x}(f^2) \log E_{\theta, \gamma, x}(f^2).$$

Lemma 2.2. For any $|a| \leq \theta^2/4$,

$$E_{\theta, \gamma, x} \left(\exp \left\{ \alpha \left(\int_0^T X_i^2 dt - E_{\theta, \gamma, x} \left(\int_0^T X_i^2 dt \right) \right) \right\} \right) \leq E_{\theta, \gamma, x} \left(\exp \left\{ \frac{4\alpha^2}{\theta^2} \int_0^T X_i^2 dt \right\} \right)$$

and

$$E_{\theta, \gamma, x} \left(\exp \left\{ \alpha T \left(\mu_i^2 - E_{\theta, \gamma, x}(\mu_i^2) \right) \right\} \right) \leq E_{\theta, \gamma, x} \left(\exp \left\{ \frac{4\alpha^2}{\theta^2} \int_0^T X_i^2 dt \right\} \right).$$

Proof. We apply Theorem 2.7 in [12] to prove the conclusions of the lemma. Take $\mathcal{A}_1 = \{ af ; |a| \leq \theta^2/4 \}$ and $\mathcal{A}_2 = \{ ah ; |a| \leq \theta^2/4 \}$, where

$$f(w) = \int_0^T w_i^2 dt, \quad h(w) = \frac{1}{T} \left(\int_0^T w_i dt \right)^2.$$

Define

$$\Gamma_1(g_1) = \frac{4}{\theta^2} g_1^2, \quad g_1 \in \mathcal{A}_1; \quad \Gamma_2(g_2) = \frac{4}{\theta^2} g_2^2, \quad g_2 \in \mathcal{A}_2.$$

Then for any $\lambda \in [-1, 1]$, $g_1 \in \mathcal{A}_1$ and $g_2 \in \mathcal{A}_2$, $\lambda g_1 \in \mathcal{A}_1$, $\lambda g_2 \in \mathcal{A}_2$, $\Gamma_1(\lambda g_1) = \lambda^2 \Gamma_1(g_1)$, $\Gamma_2(\lambda g_2) = \lambda^2 \Gamma_2(g_2)$ and by Lemma 2.1

$$E_{\theta, \gamma, x} \left(\exp \{ \lambda \Gamma_1(g_1) \} \right) < \infty, \quad E_{\theta, \gamma, x} \left(\exp \{ \lambda \Gamma_2(g_2) \} \right) < \infty.$$

Choose a sequence of real C^∞-functions $\Phi_n, n \geq 1$ with compact support such that $\lim_{n \to \infty} \sup_{|x| \leq M} |\Phi_n(x) - e^x| = 0$ for all $M \in (0, \infty)$. For any $g_1 = af \in \mathcal{A}_1$ and $g_2 = ah \in \mathcal{A}_2$, set

$$F_n(w) = \Phi_n \left(g_1(w)/2 \right), \quad H_n(w) = \Phi_n \left(g_2(w)/2 \right).$$
Then for any $g \in L^2([0, T], \mathbb{R})$,
\[
\lim_{\|g\|_2 \to 0} \frac{|F_n(w + g) - F_n(w) - \alpha \Phi_n'(g_1(w)/2) \langle w, g \rangle_{L^2}|}{\|g\|_2} = 0
\]
and
\[
\lim_{\|g\|_2 \to 0} \frac{|H_n(w + g) - H_n(w) - \alpha \Phi_n'(g_2(w)/2) \frac{1}{T} \int_0^T w_t dt |}{\|g\|_2} = 0.
\]
Therefore, $F_n, H_n \in C_0^1(W/L^2)$, $\nabla F_n = \alpha \Phi_n'(g_1(w)/2) w$, and
\[
\nabla H_n = \frac{\alpha}{T} \int_0^T w_t dt \Phi_n'(g_2(w)/2)
\]
and so by (2.9), we have
\[
\text{Ent}_{P_{\theta, x}}\left(F_n^2\right) \leq \frac{2}{\theta^2} E_{\theta, T, x} \left(\int_0^T |aw_t|^2 dt \left(\Phi_n'(g_1(w)/2)\right)^2\right)
\]
and
\[
\text{Ent}_{P_{\theta, x}}\left(H_n^2\right) \leq \frac{2}{\theta^2} E_{\theta, T, x} \left(\frac{1}{T} \left(\alpha \int_0^T w_t dt\right)^2 \left(\Phi_n'(g_2(w)/2)\right)^2\right).
\]
Letting $n \to \infty$ and by Lemma 2.1, we get
\[
\text{Ent}_{P_{\theta, x}}\left(e^{\epsilon_1}\right) \leq \frac{1}{2} E_{\theta, T, x} \left(\Gamma_1(g_1)e^{\epsilon_1}\right), \quad \text{Ent}_{P_{\theta, x}}\left(e^{\epsilon_2}\right) \leq \frac{1}{2} E_{\theta, T, x} \left(\Gamma_2(g_2)e^{\epsilon_2}\right), \quad (2.10)
\]
and so the conclusions of the lemma hold by Theorem 2.7 in [12] and $T \bar{\mu}_T^2 \leq \int_0^T X_t^2 dt$. \hfill \Box

2.3 Deviation inequalities

Since $X_T \sim N\left(\mu_T, \sigma_T^2\right)$, and under $P_{\theta, x}$
\[
\bar{\mu}_T \sim N \left(\frac{1}{\theta T} (x - \frac{\gamma}{\theta})(1 - e^{-\theta T}) + \frac{\gamma}{\theta^2 T^2} \left(T - \frac{1}{2\theta}(e^{-2\theta T} - 1) + \frac{2}{\theta^2 T}(e^{-\theta T} - 1)\right)\right),
\]
it is easily to get from Chebyshev inequality, for any $r > 0$,
\[
P_{\theta, x} \left(|X_T - E_{\theta, x}(X_T)| \geq r\right) \leq 2 \exp\left\{-\theta r^2\right\}, \quad (2.11)
\]
\[
P_{\theta, x} \left(|\bar{\mu}_T - E_{\theta, x}(\bar{\mu}_T)| \geq r\right) \leq 2 \exp\left\{-\frac{\theta^3 T^2 r^2}{2\theta + 1}\right\} \quad (2.12)
\]
where we used (2.7).
Lemma 2.3. There exist finite positive constants C_0, C_1, C_2 such that for all $r > 0$ and all $T \geq 1$,
\[
P_{\theta, y, x} \left(\left| \int_0^T X_t^2 dt - E_{\theta, y, x} \left(\int_0^T X_t^2 dt \right) \right| \geq rT \right) \leq C_0 \exp \left\{ -C_1 rT \min \{1, C_2 r\} \right\}
\]
and
\[
P_{\theta, y, x} \left(\left| \hat{\mu}_T^2 - E_{\theta, y, x}(\hat{\mu}_T^2) \right| \geq r \right) \leq C_0 \exp \left\{ -C_1 rT \min \{1, C_2 r\} \right\}.
\]
In particular, there exist finite positive constants C_0, C_1, C_2 such that for all $r > 0$ and all $T \geq 1$,
\[
P_{\theta, y, x} \left(\left| \hat{\sigma}_T^2 - E_{\theta, y, x}(\hat{\sigma}_T^2) \right| \geq r \right) \leq C_0 \exp \left\{ -C_1 rT \min \{1, C_2 r\} \right\}.
\]

Proof. We only prove the first inequality. By Lemma 2.2 and Lemma 2.1 there exist finite positive constants L_1 and L_2 such that for all $T \geq 1$, for any $|a| \leq \theta^2/4$,
\[
E_{\theta, y, x} \left(\exp \left\{ a \left(\int_0^T X_t^2 dt - E_{\theta, y, x} \left(\int_0^T X_t^2 dt \right) \right) \right\} \right) \leq L_1 e^{L_2 a^2 T}.
\]
Therefore, by Chebyshev inequality, for any $r > 0$, $T \geq 1$ and $|a| \leq \theta^2/4$,
\[
P_{\theta, y, x} \left(\int_0^T X_t^2 dt - E_{\theta, y, x} \left(\int_0^T X_t^2 dt \right) \geq rT \right) \leq L_1 e^{- \left(ar - L_2 a^2 \right) T}
\]
and
\[
P_{\theta, y, x} \left(\int_0^T X_t^2 dt - E_{\theta, y, x} \left(\int_0^T X_t^2 dt \right) \leq -rT \right) \leq L_1 e^{- \left(ar - L_2 a^2 \right) T}.
\]
Now, by
\[
\sup_{|a| \leq \theta^2/4} \{ ar - L_2 a^2 \} \geq \frac{\theta^2 r}{8} \min \left\{ 1, \frac{2r}{L_2 \theta^2} \right\},
\]
we obtain the first inequality of the lemma from the above estimates.

Lemma 2.4. There exist finite positive constants C_0, C_1 and C_2 such that for all $r > 0$ and all $T \geq 1$,
\[
P_{\theta, y, x} \left(\left| W_T \left(\hat{\mu}_T - \frac{y}{\theta} \right) \right| \geq rT \right) \leq C_0 \exp \left\{ -C_1 rT \min \{1, C_2 r\} \right\}.
\]

Proof. Since for any $r > 0$ and $T \geq 1$,
\[
\left\{ \left| W_T \left(\hat{\mu}_T - \frac{y}{\theta} \right) \right| \geq rT \right\} \subset \left\{ \left| W_T(\hat{\mu}_T - E_{\theta, y, x}(\hat{\mu}_T)) \right| \geq rT/2 \right\} \cup \left\{ \left| W_T \left(E_{\theta, y, x}(\hat{\mu}_T) - \frac{y}{\theta} \right) \right| \geq rT/2 \right\}
\]
\[
\subset \left\{ \left| W_T \right| \geq \sqrt{rT/2} \right\} \cup \left\{ \left| \hat{\mu}_T - E_{\theta, y, x}(\hat{\mu}_T) \right| \geq \sqrt{r} \right\} \cup \left\{ \left| W_T \right| \geq \frac{\theta rT}{2|\hat{\theta} - x|} \right\}
\]
by \((2.12)\) and \(W_t \sim N(0, T)\), we get
\[
P_{\theta,r,x} \left(\left| W_T (\hat{\mu}_r - \frac{Y}{\theta}) \right| \geq rT \right)
\leq 2 \exp \left(-\frac{Tr}{8} \right) + 2 \exp \left(-\frac{\theta^3 Tr}{2\theta + 1} \right) + 2 \exp \left(-\frac{\theta^2 r^2 T}{8(x - \frac{y}{\theta})^2} \right).
\]

Lemma 2.5. For each \(\beta \in \mathbb{R}\) fixed, there exist finite positive constants \(C_0, C_1, C_2\) such that for all \(r > 0\) and all \(T \geq 1\),
\[
P_{\theta,r,x} \left(\left| \int_0^T (X_t - \beta) \, dW_t \right| \geq rT \right) \leq C_0 \exp \{ -C_1 rT \min \{1, C_2 r\} \}.
\]

Proof. It is known that for \(\alpha \in \mathbb{R}\),
\[
M^{(\alpha)}_T = \exp \left\{ \alpha \int_0^T (X_t - \beta) \, dW_t - \frac{\alpha^2}{2} \int_0^T (X_t - \beta)^2 \, dt \right\}, \quad T \geq 0
\]
is \(\mathcal{F}_T\)-martingale, where \(\mathcal{F}_T := \sigma(W_t, t \leq T)\). Therefore, by Hölder inequality, we can get that for any \(\epsilon \in (0, 1]\),
\[
E_{\theta,\gamma,x} \left(\exp \left\{ \alpha \int_0^T (X_t - \beta) \, dW_t \right\} \right) \\
\leq \left(E_{\theta,\gamma,x} \left(\exp \left\{ \frac{(1 + \epsilon)^2 \alpha^2}{2 \epsilon} \int_0^T (X_t - \beta)^2 \, dt \right\} \right) \right)^{\frac{1}{1+\epsilon}} \left(E_{\theta,\gamma,x} \left(M_T^{(1+\epsilon)\alpha} \right) \right)^{\frac{1}{1+\epsilon}}.
\]

In particular, take \(\epsilon = 1\), then by Lemma \(2.1\) there exists finite positive constants \(L_1 = L_1(\theta, \beta, \gamma, x)\) and \(L_2 = L_2(\theta, \beta, \gamma, x)\) such that for all \(T \geq 1\), for any \(\alpha^2 \leq \theta^2 / 16\), by Cauchy-Schwartz inequality,
\[
E_{\theta,\gamma,x} \left(\exp \left\{ \alpha \int_0^T (X_t - \beta) \, dW_t \right\} \right) \\
\leq \left(E_{\theta,\gamma,x} \left(\exp \left\{ 2\alpha^2 \int_0^T (X_t - \beta)^2 \, dt \right\} \right) \right)^{\frac{1}{2}} \\
\leq \left(E_{\theta,\gamma,x} \left(\exp \left\{ 4\alpha^2 \int_0^T X_t^2 \, dt \right\} \right) \right)^{\frac{1}{2}} \left(E_{\theta,\gamma,x} \left(\exp \left\{ 4\alpha^2 \int_0^T (-2\beta X_t + \beta^2) \, dt \right\} \right) \right)^{\frac{1}{2}} \\
\leq L_1 e^{2\alpha^2 T}.
\]

Therefore, by Chebyshev inequality, the conclusion of the lemma holds. \(\square\)
Proof of Theorem 1.1

We only show the first inequality. The second one is similar. By

\[\hat{\theta} - \theta = \frac{W_T \left(\hat{\mu} - \frac{\gamma}{\theta} \right) - \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t}{T \hat{\sigma}^2_T} \]

for any \(r > 0 \) and \(T \geq 1 \),

\[
p_{\theta, y, x} \left(|\hat{\theta} - \theta| \geq r \right) \\
\leq p_{\theta, y, x} \left(|\hat{\sigma}^2_T - E_{\theta, y, x}(\hat{\sigma}^2_T)| \geq E_{\theta, y, x}(\hat{\sigma}^2_T)/2 \right) \\
+ p_{\theta, y, x} \left(|W_T \left(\hat{\mu} - \frac{\gamma}{\theta} \right) - \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t| \geq E_{\theta, y, x}(\hat{\sigma}^2_T)rT/2 \right)
\]

Therefore, by Lemmas 2.3, 2.4 and 2.5 we obtain the first inequality of the theorem. \(\square \)

3 Moderate deviations

In this section, we show Theorem 1.1. By (1.2) and (1.3), we have the following estimates

\[\left| (\hat{\theta} - \theta) + \frac{2\theta}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \]

\[
\leq \frac{|W_T \left(\hat{\mu} - \frac{\gamma}{\theta} \right)|}{T \hat{\sigma}^2_T} + \frac{|2\theta \hat{\sigma}^2_T - 1|}{T \hat{\sigma}^2_T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t
\]

and for

\[\left| (\gamma - \gamma) - \frac{W_T}{T} + \frac{2\gamma}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \]

\[
\leq \frac{|\hat{\mu}||W_T \left(\hat{\mu} - \frac{\gamma}{\theta} \right)|}{T \hat{\sigma}^2_T} + \frac{|2\gamma \hat{\sigma}^2_T - \hat{\mu}|}{T \hat{\sigma}^2_T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t.
\]

Lemma 3.1. (1) For any \(r > 0 \),

\[
\lim_{T \to \infty} \log P_{\theta, y, x} \left(\left| X_t - \frac{\gamma}{\theta} \right| dW_t \geq \sqrt{T\lambda_T r} \right) = -\infty,
\]

\[
\lim_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, y, x} \left(\left| X_t - \frac{\gamma}{\theta} \right| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \geq \sqrt{T\lambda_T r} \right) = -\infty
\]

and

\[
\lim_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, y, x} \left(\left| \frac{\sigma^2_T}{\lambda_T} - \frac{1}{2\theta} \right| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \geq \sqrt{T\lambda_T r} \right) = -\infty.
\]
(2). For any $\delta > 0$,
\[
\limsup_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\left| (\hat{\theta}_T - \theta) - \frac{2\theta}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \delta \sqrt{\frac{\lambda_T}{T}} \right) = -\infty
\]
and
\[
\limsup_{T \to \infty} \frac{1}{\lambda_T} \log P_{\hat{\theta}, \gamma, x} \left(\left| (\hat{\gamma}_T - \gamma) - \frac{W_T}{T} - \frac{2\gamma}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \delta \sqrt{\frac{\lambda_T}{T}} \right) = -\infty.
\]

Proof. (1). We only give the proof of the third assertion in (1). The rest is similar. For any $L > 0$,
\[
\left\{ \left| \hat{\sigma}_T^2 - \frac{1}{2\theta} \right| \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \sqrt{T \lambda_T} r \right\}
\]
\[
\subset \left\{ \left| \hat{\sigma}_T^2 - \frac{1}{2\theta} \right| \geq \frac{r}{L} \right\} \cup \left\{ \frac{1}{\sqrt{T \lambda_T}} \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq L \right\}.
\]

By Lemma 2.3 and Lemma 2.5 we have
\[
\limsup_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\left| \hat{\sigma}_T^2 - \frac{1}{2\theta} \right| \geq \frac{r}{L} \right) = -\infty
\]
and
\[
\limsup_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\frac{1}{\sqrt{T \lambda_T}} \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq L \right) \leq -L^2 C_1 C_2.
\]

Hence,
\[
\limsup_{T \to \infty} \frac{1}{\lambda_T} \log P_{\theta, \gamma, x} \left(\left| \hat{\sigma}_T^2 - \frac{1}{2\theta} \right| \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \sqrt{T \lambda_T} r \right) \leq -L^2 C_1 C_2.
\]

Letting $L \to \infty$, we obtain the third conclusion.

(2). It follows from (3.1) and (3.2) that
\[
\left(\left| (\hat{\theta}_T - \theta) - \frac{2\theta}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \delta \sqrt{\frac{\lambda_T}{T}} \right)
\]
\[
\subset \left\{ |W_T (\hat{\mu}_T - \frac{\gamma}{\theta})| \geq \delta \hat{\sigma}_T^2 \sqrt{T \lambda_T} \right\} \cup \left\{ |2\theta \hat{\sigma}_T^2 - 1| \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \delta \hat{\sigma}_T^2 \sqrt{T \lambda_T} \right\}
\]
\[
\subset \left\{ |W_T (\hat{\mu}_T - \frac{\gamma}{\theta})| \geq \delta E_{\theta, \gamma, x} (\hat{\sigma}_T^2) \sqrt{T \lambda_T} \right\} \cup \left\{ |\hat{\sigma}_T^2 - E_{\theta, \gamma, x} (\hat{\sigma}_T^2)| \geq E_{\theta, \gamma, x} (\hat{\sigma}_T^2) \right\} / 2 \}
\]
\[
\cup \left\{ |2\theta \hat{\sigma}_T^2 - 1| \left| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right| \geq \delta E_{\theta, \gamma, x} (\hat{\sigma}_T^2) \sqrt{T \lambda_T} \right\} / 4 \}
\]
and
\[
\left(|\hat{\gamma}_T - \gamma| - \frac{2\gamma}{T} \right) \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \geq \delta \sqrt{\frac{\lambda_T}{T}}
\]
\(\sim \begin{cases}
|\bar{\mu}_T| |W_T(\hat{\mu}_T - \frac{\gamma}{\theta})| / \geq \delta \sigma_T^2 \sqrt{T \lambda_T} / 2 \end{cases} \cup \begin{cases} |2\gamma T - \hat{\mu}_T| \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \geq \delta \sigma_T^2 \sqrt{T \lambda_T} / 2 \end{cases}
\]
\(\cup \begin{cases} 3\frac{\gamma}{2\theta} |W_T(\hat{\mu}_T - \frac{\gamma}{\theta})| \geq \delta E_{\theta,\gamma,x}(\hat{\sigma}_T^2) \sqrt{T \lambda_T} / 4 \end{cases}
\]
\(\cup \begin{cases} \left(2\gamma T - \hat{\mu}_T - \frac{\gamma}{\theta} \right) \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \geq \delta E_{\theta,\gamma,x}(\hat{\sigma}_T^2) \sqrt{T \lambda_T} / 4 \end{cases}
\).

Therefore, by Lemmas 2.3 and (1), we get the conclusions.

\[\Box\]

Lemma 3.2. For each \(\beta, \kappa \in \mathbb{R}\) fixed, \(\left\{ P_{\theta,\gamma,x} \left(\frac{n}{\sqrt{T \lambda_T}} \int_0^T (X_t - \beta) dW_t \in \cdot \right), T \geq 1 \right\} \) satisfies the LDP with speed \(\lambda_T\) and rate function \(J(u) = \frac{\kappa^2 u^2}{\theta^2 + 2(\gamma - \theta)^2}\).

Proof. By (2.12) and Lemma 2.3, we can get for any \(\delta > 0\),
\[
\lim_{T \to \infty} \frac{1}{T} \log P_{\theta,\gamma,x} \left(\left| \frac{1}{T} \int_0^T (X_t - \beta)^2 dt - \left(\frac{1}{2\theta} + \frac{1}{\theta^2}(\gamma - \theta)^2 \right) \right| \geq \delta \right) < 0. \tag{3.3}
\]

Therefore, Proposition 1 in [4] yields the conclusion of the lemma.

\[\Box\]

Proof of Theorem 1.2

By Lemma 3.1 \(\left\{ P_{\theta,\gamma,x} \left(\frac{T}{\lambda_T} (\hat{\gamma}_T - \theta) \in \cdot \right), T \geq 1 \right\} \) and \(\left\{ P_{\theta,\gamma,x} \left(\frac{T}{\lambda_T} (\hat{\gamma}_T - \gamma) \in \cdot \right), T \geq 1 \right\} \) are exponential equivalent to
\[
\left\{ P_{\theta,\gamma,x} \left(\frac{T}{\lambda_T} \left(X_t - \frac{\gamma}{\theta} \right) dW_t \in \cdot \right), T \geq 1 \right\}
\]

and
\[
\left\{ P_{\theta,\gamma,x} \left(\frac{T}{\lambda_T} \left(\frac{W_T}{T} + \frac{2\gamma}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t \right) \in \cdot \right), T \geq 1 \right\},
\]

respectively. Noting for \(\gamma \neq 0\), \(\frac{W_T}{T} + \frac{2\gamma}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t = \frac{2\gamma}{T} \int_0^T \left(X_t - \frac{\gamma}{\theta} \right) dW_t + \frac{1}{2T} dW_L\), Theorem 1.2 follows from Lemma 3.2.
Acknowledgments The authors are grateful to referees for their comments and suggestions.

References

