STABLE SUBNORMS ON FINITE-DIMENSIONAL POWER-ASSOCIATIVE ALGEBRAS

MOSHE GOLDBERG†

Abstract. Let \(A \) be a finite-dimensional power-associative algebra over a field \(F \), either \(\mathbb{R} \) or \(\mathbb{C} \), and let \(S \), a subset of \(A \), be closed under scalar multiplication. A real-valued function \(f \) on \(S \) is called a subnorm if \(f(a) > 0 \) for all \(0 \neq a \in S \), and \(f(\alpha a) = |\alpha|f(a) \) for all \(a \in S \) and \(\alpha \in F \). If in addition, \(S \) is closed under raising to powers, then a subnorm \(f \) is said to be stable if there exists a positive constant \(\sigma \) so that

\[
 f(a^k) \leq \sigma f(a)^k \quad \text{for all} \quad a \in S \quad \text{and} \quad k = 1, 2, 3, \ldots.
\]

The purpose of this paper is to provide an updated account of our study of stable subnorms on subsets of finite-dimensional power-associative algebras over \(F \). Our aim is to review and discuss some of the results in several previous papers, dealing with both continuous and discontinuous subnorms.

Key words. Finite-dimensional power-associative algebras, Norms, Subnorms, Submoduli, Stable subnorms, Minimal polynomial, Radius of an element in a finite-dimensional power-associative algebra.

AMS subject classifications. 15A60, 16B99, 17A05.