ON THE SPECTRAL RADIi OF QUASI-TREE GRAPHS AND QUASI-UNICYCLIC GRAPHS WITH K PENDANT VERTICES∗

XIA NYA GENG† AND SHUCHAO LI†

Abstract. A connected graph $G = (V, E)$ is called a quasi-tree graph if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a tree. A connected graph $G = (V, E)$ is called a quasi-unicyclic graph if there exists a vertex $u_0 \in V(G)$ such that $G - u_0$ is a unicyclic graph. Set $T(n, k) := \{ G : G \text{ is a } n\text{-vertex quasi-tree graph with } k \text{ pendant vertices} \}$, and $T(n, d_0, k) := \{ G : G \in T(n, k) \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G - u_0 \text{ is a tree and } d_G(u_0) = d_0 \}$. Similarly, set $U(n, k) := \{ G : G \text{ is a } n\text{-vertex quasi-unicyclic graph with } k \text{ pendant vertices} \}$, and $U(n, d_0, k) := \{ G : G \in U(n, k) \text{ and there is a vertex } u_0 \in V(G) \text{ such that } G - u_0 \text{ is a unicyclic graph and } d_G(u_0) = d_0 \}$. In this paper, the maximal spectral radii of all graphs in the sets $T(n, k)$, $T(n, d_0, k)$, $U(n, k)$, and $U(n, d_0, k)$, are determined. The corresponding extremal graphs are also characterized.

Key words. Quasi-tree graph, Quasi-unicyclic graph, Eigenvalues, Pendant vertex, Spectral radius.

AMS subject classifications. 05C50.