The notion of a tensor product of topological groups and modules is important in theory of topological groups, algebraic number theory. The tensor product of compact zero-dimensional modules over a pseudocompact algebra was introduced in [B] and for the commutative case in [GD], [L]. The notion of a tensor product of abelian groups was introduced in [H]. The tensor product of modules over commutative topological rings was given in [AU]. We will construct in this note the tensor product of a right compact R-module AR and a left compact R-module RB over a topological ring R with identity. Some properties of tensor products are given.

Notation ω stands for the set of all natural numbers. If A is a locally compact group, K a compact subset of it and $\varepsilon > 0$, then $T(K, \varepsilon) := \{\alpha \in A^*: \alpha(K) \subseteq \varphi (O\varepsilon)\}$, where φ is the canonical homomorphism of R on $R/\mathbb{Z} = T$. If m, n are natural numbers then $[m, n]$ stands for the set of all natural numbers x such that $m \leq x \leq n$.

Let R be a topological ring with identity and AR, RB compact unitary right and left R-modules, respectively. A continuous function $\beta : A \times B \to C$, where C is a compact abelian group, is said to be R-balanced if it is linear on each variable, i.e., $\beta(a_1 + a_2, b) = \beta(a_1, b) + \beta(a_2, b)$ and $\beta(a, b_1 + b_2) = \beta(a, b_1) + \beta(a, b_2)$ for each $a, a_1, a_2 \in A, b, b_1, b_2 \in B$, and $\beta(ar, b) = \beta(a, rb)$ for each $a \in A, b \in B, r \in R$.

A pair (C, π) where C is a compact abelian group and $\pi : A \times B \to C$ is a R-balanced map is called a tensor product of AR and RB provided for each compact abelian group D and each R-balanced mapping $\alpha : A \times B \to D$ there exists a unique continuous homomorphism $\alpha : C \to D$ such that the following diagram commutes,

$$
\begin{array}{ccc}
A \times B & \xrightarrow{\pi} & C \\
\alpha \downarrow & & \alpha \hat{\circ} \\
D & & \end{array}
$$

i.e., $\alpha = \alpha \hat{\circ} \pi$.

Remark. If AR, RB are compact right and left R-modules, respectively, C a compact abelian group, $\pi : A \times B \to C$ a R-balanced mapping and $\alpha : C \to C_1$ a continuous homomorphism, then $\alpha \hat{\circ} \pi : A \times B \to C_1$ is a R-balanced mapping.

Proposition. The tensor product, if it exists, is unique up to a topological isomorphism.

Proof. Let (C, π) be a tensor product of AR and RB. Then the subgroup C_1 of C generated by elements $\pi(a, b), a \in A, b \in B$ is dense in C. Denote by p the canonical
homomorphism of C on C/\hat{C}_1. Consider the trivial R-balanced mapping π_1 of $A\times B$ in C/\hat{C}_1, i.e., $\pi_1(a,b) = 0$ for every $a \in A, b \in B$. Then $\pi_1 = 0 \circ \pi = p \circ \pi$. By the definition of a tensor product $p = 0$, hence $C = \hat{C}_1$.

Let now (C, π) and (C_1, π_1) be two tensor products of A_R and \hat{B}_R. Then there exist continuous homomorphisms $\alpha : C \to C_1$ and $\beta : C_1 \to C$ such that $\pi_1 = \alpha \circ \pi = \beta \circ \pi$. Then $(\alpha \circ \beta)(\pi_1(a, b)) = (\alpha \circ \beta)(\pi(a, b)) = \pi_1(a, b) = \pi_1(a, b) = \pi(a, b)$ for each $a \in A, b \in B$. Hence $\alpha \circ \beta = 1_C$. In an analogous way, $(\beta \circ \alpha)(\pi(a, b)) = \beta \circ \alpha(\pi(a, b)) = \beta(\pi_1(a, b)) = \pi(a, b)$ for each $a \in A, b \in B$, hence $\beta \circ \alpha = 1_C$. Therefore, C and C_1 are topologically isomorphic.

We will prove the existence of the tensor product for any compact right R-module A_R and any compact left R-module \hat{B}_R. It will be denoted by $A \otimes \hat{B}_R$.

Theorem 1. If A_R is a compact unitary right R-module and \hat{B}_R is a compact left unitary R-module over a topological ring R with identity then there exists the tensor product $A \otimes \hat{B}_R$.

Proof. Let F be the discrete group of all R-balanced mappings f of $A \times B$ in \mathbb{T} having the following properties:

i) $f(ar, b) = f(a, rb)$ for all $r \in R, a \in A, b \in B$

ii) there exists a neighborhood V of zero of R such that $f(av, b) = 0$ for all $v \in V, a \in A, b \in B$.

Consider the dual group $C = F^*$. Define $\pi : A \times B \to C$ as follows: If $(a, b) \in A \times B$, then put $\pi(a, b)(f) := f(a, b)$ for each $f \in F$. It is easy to prove that π is a R-balanced mapping. Let, for example, $a \in A, r \in R, b \in B$. Then for each $f \in F$, $\pi(ar, b)(f) = f(ar, b) = f(a, rb) = \pi(a, rb)(f)$, hence $\pi(ar, b) = \pi(a, rb).

We affirm that π is continuous. Let W be any neighborhood of zero of C. Then there is an $\varepsilon > 0$ and a finite subset K of F such that $T(K, \varepsilon) \subseteq W$. Since all $f \in K$ are continuous at $(0, 0)$, there exist neighborhoods U, V of zeros of A and B, respectively, such that $f(U \times V) \subseteq \varphi(O_1)$ for all $f \in K$. Then $\pi(U \times V) \subseteq W$. Indeed, if $f \in K, u \in U, v \in V$, then $\pi(u, v)(f) = f(u, v) \subseteq \varphi(O_1)$, and so $\pi(u, v) \subseteq T(K, \varepsilon)$. We proved that $\pi(U \times V) \subseteq W$, hence π is continuous at $(0,0)$.

Let $a \in A, K$ a finite subset of F and $\varepsilon > 0$. Since every $f \in K$ is continuous there exists a neighborhood V of zero of B such that $f(a, V) \subseteq \varphi(O_1)$ for each $f \in K$. Then $\pi(a, V) \subseteq T(K, \varepsilon)$. Indeed, if $v \in V$, then for each $f \in K, \pi(a, v)(f) = f(a, v) \subseteq \varphi(O_1)$. Therefore $\pi(a, V) \subseteq T(K, \varepsilon)$, i.e., π is continuous at $(a, 0)$. By symmetry π is continuous at $(0, b), b \in B$. We proved that π is a continuous R-balanced map.

We will prove now that C is the tensor product of A and B. Let $\alpha : A \times B \to X$ be a R-balanced map in a compact abelian group X. We define a homomorphism $\lambda : X^* \to F$ as follows: for every $y \in X^*, \gamma \circ \alpha : A \times B \to T$ is a R-balanced mapping of $A \times B$. Theorem 1
in T, i.e., $\gamma^*a \in F$. Put $\lambda(\gamma) = \gamma^*a$, $\gamma \in X^*$. We claim that λ is a homomorphism. Indeed, let $\gamma_1, \gamma_2 \in X^*$. Then for each $a \in A, b \in B$, $\lambda(\gamma_1 + \gamma_2)(a, b) = (\gamma_1 + \gamma_2)(\lambda(a, b)) = \gamma_1(\lambda(a, b)) + \gamma_2(\lambda(a, b)) = \lambda(\gamma_1)(a, b) + \lambda(\gamma_2)(a, b)$.

Let $\lambda^*: F^* \to X^{**}$ be the conjugate homomorphism for λ. Put $\hat{\lambda} : F^* \to X$, $\hat{\lambda} = \omega^{-1}\lambda^*$, where ω is the canonical topological isomorphism of X on X^{**}. We affirm that $\alpha = \hat{\lambda} \circ \pi$. Indeed, fix $(a, b) \in A \times B$. Then $\alpha(a, b) = \hat{\lambda}((\pi(a, b))) = \omega^{-1}\lambda^*((\pi(a, b))) = \omega(\alpha(a, b)) = \lambda^*((\pi(a, b))) = \pi(a, b) \circ \lambda$. The last equality is true \iff for each $\gamma \in X^*$, $\omega(\alpha(a, b))(\gamma) = \pi(a, b)(\gamma) \Rightarrow \gamma(a, b) = \gamma(a, b)(\gamma) \Rightarrow \gamma(a, b) = \gamma(\alpha(a, b)) = \gamma(a, b)(\gamma^*a) \Rightarrow \gamma(a, b) = \gamma(a, b)(\gamma^*a)$, which is true.

The uniqueness of $\hat{\lambda}$. It is sufficient to prove that the set $\{ \pi(a, b) : a \in A, b \in B \}$ generates $A \otimes_R B$ as a topological group. It is well known from the duality theory that if X is a locally compact abelian group and S a subgroup of X^* which separates points then S is dense in X^*. We affirm that the subgroup $D = \{ \pi(a, b) : a \in A, b \in B \}$ separates points of F. Indeed, let $0 \neq \xi \in C$, then there exists $(a, b) \in A \times B$ such that $0 \neq \xi(a, b) = \pi(a, b)(\xi)$, i.e., D separates points of F. Therefore, α is unique.

We will denote below $\pi(a, b)$, where $a \in A, b \in B$ by $a \otimes b$.

Theorem 2. If A, B are zero-dimensional compact right and left R-modules then $A \otimes_R B$ is zero-dimensional.

Proof. Let $f \in F$; then f is a continuous R-balanced map of $A \times B$ in T. Let V be a neighborhood of zero of T which does not contain a non-zero subgroup. For every $a \in A$ there exist a neighborhood U_a and an open subgroup V^a of B such that $f(U_a \times V^a) \subseteq V$. There exist $a_1, \ldots, a_n \in A$ such that $A = U_{a_1} \cup \ldots \cup U_{a_n}$. Denote $V_0 = V^{a_1} \cap \ldots \cap V^{a_n}$. We obtain immediately that $f(A, V_0) \subseteq V$, hence $f(A, V_0) = 0$.

Let $B = V_0 \cup (b_1 + V_0) \cup \ldots \cup (b_k + V_0)$. Then $f(A \times B) \subseteq f(A, b_1) + \ldots + f(A, b_k)$. Each subset $f(A, b_1), \ldots, f(A, b_k)$ is a compact zero-dimensional subgroup of T. Therefore $f(A, b_1) + \ldots + f(A, b_k)$ is a finite subgroup of T. It follows that there exists $m \in \omega$ such that $mf = 0$, i.e., F is a torsion group. It is well known that F^* is zero-dimensional.

The author learned recently that a particular analogue of Theorem 2 was proved by Hofmann (see, [HM]).

Theorem 3. If A_R or B_R is connected then $A \otimes_R B = 0$.

Proof. Assume that B is connected. Let V be a neighborhood of zero of T which does not contain non-zero subgroups. Fix $\xi \in C$. There exists a neighborhood V_0 of 0 of B
such that $\xi(A \times V_0) = 0$ (as in the proof of the previous theorem). Since B is generated by V_0, $\xi(A \times B) = 0$. We obtained that $F = 0$, hence $C = 0$.

Let A_R be a compact right R-module and B_L a compact left R-module over a topological ring R. If $X \subseteq A$, $Y \subseteq B$, then we will denote by $[X \otimes Y]$ the closure of the subgroup of $A \otimes B_L$ generated by elements of the form $\sum_{i=0}^{n} x_i \otimes y_i$, $x_i \in X$, $y_i \in Y$, $n \in \omega$.

Theorem 4. If A_R and B_L are compact zero-dimensional left and right R-modules then the family $[U \otimes B_L] + [A \otimes V]$ where U runs all open subgroups of A and V runs all open subgroups of B is a fundamental system of neighborhoods of zero of $A \otimes B_L$.

Proof. The subgroup $\langle x \otimes y : x \in A, y \in B \rangle$ is dense in $A \otimes B_L$. Let U be an open subgroup of A and V an open subgroup of B. There exist finite symmetric subsets $F \subseteq A$, $K \subseteq B$ such that $A = F + U$, $B = K + V$. For each $x \in F$, $y \in K$, $u \in U$, $v \in V$, $(x + u) \otimes (y + v) = x \otimes y + x \otimes v + u \otimes y + u \otimes v$. Since A/U is finite, there exists $k \in \omega$ such that $kA \subseteq U$. Consider the finite subsets $H = \{ (lx) \otimes y : l \in [0, k-1], x \in F, y \in K \}$, $H_1 = [l]H$. It is evidently that $C = H_1 + [U \otimes B_L] + [A \otimes B_L]$, hence $[U \otimes B_L] + [A \otimes B_L]$ is open.

Let W be an open subgroup of $A \otimes B_L$. By continuity of the mapping $\pi : A \times B \rightarrow A \otimes B_L$ and compactness of A and B there exist an open subgroup U of A and an open subgroup V of B such that $U \otimes B_L \subseteq W$, $A \otimes V \subseteq W \Rightarrow [U \otimes B] + [A \otimes V] \subseteq W$.

Acknowledgment. The author is grateful to professors Mitrofan Ciobanu and Mihail Ursul for their constant interest and helpful suggestions in this work.

References

Author:
Alb Alina, Mathematics Department, University of Oradea, Romania,
dalb@uoradea.ro