THE FULL RANK CASE FOR A LINEARISABLE MODEL

by

Nicoleta Breaz, Daniel Breaz

Abstract. We consider a model which can be reduced to a linear one by substitution. For this model, we obtain a full rank case theorem for uniquely fitting written in terms of initial matrix of sample data.

Definition 1
Let be Y a variable which depends on influence of some factors expressed by other p variables $X_1, X_2, ..., X_p$. The regression is a search method for dependence of variable Y on variables $X_1, X_2, ..., X_p$ and consist in determination of a functional connection f such that

$$Y = f(X_1, X_2, ..., X_p) + \varepsilon$$ \hspace{1cm} (1)

where ε is a random term (error) which include all factors that can not be quantificated by f and which satisfies the conditions:

a) $E(\varepsilon) = 0$

b) $\text{Var}(\varepsilon)$ has a small value

Formula (1) with conditions a) and b) is called regressional model, variable Y is called the endogene variable and variables $X_1, X_2, ..., X_p$ are called the exogene variables.

Definition 2
The next regression is called a parametric regression

$$f(X_1, X_2, ..., X_p) = f(X_1, X_2, ..., X_p; \alpha_1, \alpha_2, ..., \alpha_p)$$

Otherwise the regression is called a nonparametric regression.

The regression bellow is called a linear regression

$$f(X_1, X_2, ..., X_p; \alpha_1, \alpha_2, ..., \alpha_p) = \sum_{k=1}^{p} \alpha_k X_k$$

Remark 3
If function f from regressional models is linear with respect to the parameters $\alpha_1, \alpha_2, ..., \alpha_p$, that is

$$f(X_1, X_2, ..., X_p; \alpha_1, \alpha_2, ..., \alpha_p) = \sum_{k=1}^{p} \alpha_k \varphi_k(X_1, X_2, ..., X_p)$$

than regression can be reduced to linear one.

Definition 4
It is called the linear regressional model between variable Y and variables $X_1, X_2, ..., X_p$, the model
Remark 5.
The linear regression problem consists in study of variable Y behavior with respect to the factors $X_1, X_2, ..., X_p$ the study made by “evaluation” of regressional parameters $\alpha_1, \alpha_2, ..., \alpha_p$ and random term ε.

Let be considered a sample of n data

\[
y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad x = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}, \quad n >> p
\]

Than one can make the problem of evaluations for regressional parameters $\alpha^T = (\alpha_1, \alpha_2, ..., \alpha_p) \in \mathbb{R}^p$ and for error term $\varepsilon^T = (\varepsilon_1, \varepsilon_2, ..., \varepsilon_n) \in \mathbb{R}^n$, from these data.

From this point of views the fitting of theoretic model can offering solutions. Matricial the model (2) can be written in form

\[
y = x\alpha + \varepsilon \quad \text{(2')}\]

and represent the linear regressional theoretical model.

By fitting this models using a condition of minim results the fitted model

\[
y = xa + e \quad \text{(2'')}\]

where $a^T \in \mathbb{R}^p, e^T \in \mathbb{R}^n$.

It is desirable that residues $e_1, e_2, ..., e_n$ to be minimal. Then can be realised using the least squares criteria.

Definition 6.
It is called the least squares fitting, the fitting which corresponds to the solutions (a, e) of the system $y = xa + e$, which minimise the expression

\[
e^T e = \sum_{k=1}^{n} \varepsilon_k^2
\]

Theorem 7.(full rank case)
If $\text{rang}(x) = p$ then the fitting solution by least squares criteria is uniquely given by

\[
a = \left(x^T x\right)^{-1} x^T y
\]

Remark 8.
In this paper we consider the next model

\[
y = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_{p-1} x_{p-1} + \alpha_p x_p + \varepsilon \quad \text{(3)}
\]
where $y^T = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$, $\alpha^T = (\alpha_1, \alpha_2, \ldots, \alpha_{p-1}) \in \mathbb{R}^{p-1}$, $\varepsilon^T = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) \in \mathbb{R}^n$ and x is the sample data/sample variables matrix

$$x \in M_{n,p}, x = \begin{pmatrix} x_1 & x_{12} & \ldots & x_{1p-1} & x_{1p} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n1} & x_{n2} & \ldots & x_{np-1} & x_{np} \end{pmatrix} \in \mathbb{R}^{p \times n}$$

With substitutions $x_i x_{iv} = z_i, \forall i = 1, p-1$, we obtain the new matrix,

$$z \in M_{n,p-1}, z = (z_1, z_2, \ldots, z_{p-1}) = \begin{pmatrix} x_{11} & x_{12} \cdot x_{13} & \ldots & x_{1p-1} \cdot x_{1p} \\ x_{21} & x_{22} \cdot x_{23} & \ldots & x_{2p-1} \cdot x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} \cdot x_{n3} \cdot x_{np-1} & \ldots & x_{np-1} \cdot x_{np} \end{pmatrix}$$

and the linear model $y = \alpha_1 z_1 + \alpha_2 z_2 + \ldots + \alpha_{p-1} z_{p-1} + \varepsilon$, which after the least squares fitting becomes $y = a_1 z_1 + a_2 z_2 + \ldots + a_{p-1} z_{p-1} + \varepsilon$, where $a^T = (a_1, a_2, \ldots, a_{p-1}) \in \mathbb{R}^{p-1}$, $e^T = (e_1, e_2, \ldots, e_n) \in \mathbb{R}^n$. The fitting uniquely solutions results from $\text{rang}(z) = p - 1$ (see theorem 7).

The purpose of our paper is to give an analogous theorem based on initial sample variables.

Theorem 9.

If $\text{rang}(x) = p$, $p \in \{2, 3\}$, and if the sample data are not nulls than uniquely exist the least squares fitting solution $a = (x^T x)^{-1} x^T y$ where $x = (x_1 * x_2, \ldots, x_{p-1} * x_p)$ and $x_i * x_j$ is the natural product between the vectors x_i and x_j that is the vector which can be obtained by multiplications one components of the two vectors.

Proof

Case $p = 2$:

The sample matrix is $x \in M_{n,2}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and the model

$$y = \alpha_1 x_1 + \alpha_2 x_2 + \varepsilon.$$

We make the substitution $x_1 x_2 = z$, which results $y = \alpha z + \varepsilon$.

3
Because the sample data are not nulls it results \(\text{rang}(z) = 1 \), where \(z = \begin{pmatrix} x_{11} \cdot x_{12} \\ x_{21} \cdot x_{22} \\ \vdots \\ x_{n1} \cdot x_{n2} \end{pmatrix} \).

One can observe that is sufficient that for a single unit of sample, data must be differed from zero. According to theorem 7 if \(\text{rang}(z) = 1 \) then uniquely exist

\[a_1 = a = (z^T z)^{-1} z^T y = (x^T x_*)^{-1} x^T y \text{ where } x_* = (x_1 \ast x_2) \in M_{a,1}. \]

Case \(p = 3 \):

The sample matrix is \(x \in M_{a,3}, \ x = (x_1, x_2, x_3) \), \(x = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & x_{n3} \end{pmatrix} \)

and the model

\(y = \alpha_1 x_1 x_2 + \alpha_2 x_2 x_3 + \varepsilon \). We use the substitutions \(x_1 x_2 = z_1, x_2 x_3 = z_2 \) and we obtain

\(y = \alpha_1 z_1 + \alpha_2 z_2 + \varepsilon \). If \(\text{rang}(x) = 3 \) then results that at least one minor of three order is differed from zero and let be this one (without restrict the generality)

\[d = \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix}. \]

If \(d \neq 0 \), developing by the second column results that at least one of the three minor from the development is not null and let be, by example, this one

\[d_2 = \begin{vmatrix} x_{11} & x_{13} \\ x_{21} & x_{23} \end{vmatrix} \neq 0. \]

On the other way we calculate a minor of two order from \(z \), by example

\[d_2 = \begin{vmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{vmatrix} = \begin{vmatrix} z_{11} z_{22} - z_{12} z_{21} = x_{11} x_{12} x_{22} x_{23} - x_{12} x_{13} x_{21} x_{22} = x_{12} x_{22} (x_{11} x_{23} - x_{13} x_{21}) = \\
\end{vmatrix} x_{12} x_{22} \cdot d_2 \]

Because from the hypothesis, the sample data are not nulls and \(\text{rang}(x) = 3 \), \(d_2 \neq 0 \) then results that \(d_2 \neq 0 \), so \(\text{rang}(z) = 2 \). According to theorem 7 it results

that uniquely exists the solution \(a = (z^T z)^{-1} z^T y = (x^T x_*)^{-1} x^T y \) where

\(x_* = (x_1 \ast x_2, x_2 \ast x_3) \).

Remark 10.
A weak condition, namely \(\text{rang}(x) = p - 1, \ p \in \{2,3\} \) is not sufficient because this is not implied that \(\text{rang}(z) = p - 1 \). However, it can be given an intermediary condition between \(\text{rang}(x) = p - 1 \) and \(\text{rang}(x) = p \).

Theorem 11.
If in sample data matrix there exists a minor of second order differed from zero, at least, which not contains elements from second column, then \(a = (x^T \ast x_*) \) with \(x_* = (x_1 \ast x_2, x_2 \ast x_3) \).

Proof
By example \(d_2 = \begin{vmatrix} x_{11} & x_{13} \\ x_{21} & x_{23} \end{vmatrix} = x_{11}x_{23} - x_{13}x_{21} \neq 0 \) and
\[
d_2 = \begin{vmatrix} x_{11}x_{12} & x_{12}x_{13} \\ x_{21}x_{22} & x_{22}x_{23} \end{vmatrix} = x_{12}x_{22}(x_{11}x_{23} - x_{13}x_{21}) \neq 0
\]

Remark 12.
These theorems can not be generalised for any \(p \). A similar theorem with 11 can be given in general case if we define the pseudominor in follow sense.

Definition 13.
Let be \(x \in M_{n,p} \). We call the pseudo-minor of \(p - 1 \) order from matrix \(x \), formed by the first \(p - 1 \) rows of \(x \), the expression
\[
d^I = \sum_{\sigma \in S_{p-1}} (-1)^{\text{sign}((x_{i\sigma(1)} \cdots x_{p-1 \sigma(p-1)}))} x_{i\sigma(1)} \cdots x_{p-1 \sigma(p-1)} = \\
= \sum_{\sigma \in S_{p-1}} (-1)^{\text{sign} \cdot \prod_{i=1}^{p-1} x_{i\sigma(i)} \cdot \prod_{i=1}^{p-1} x_{i\sigma(i)+1}}
\]

Remark 14.
In calculus of \(d \) we apply the ordinary formula for a determinant of \(p - 1 \) order only that the elements from products appearing in determinant are product of elements which are from minor of \(p - 1 \) obtained by elimination of the first column and from minor of \(p - 1 \) order obtained by elimination of last column.

\[
d^I = \begin{vmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \end{vmatrix} = (x_{11}x_{22}x_{33})x_{12}x_{23}x_{34} + (x_{13}x_{21}x_{32})x_{14}x_{22}x_{33} +
\]
\[
+ (x_{31}x_{12}x_{23})x_{32}x_{13}x_{24} - (x_{13}x_{22}x_{31})x_{14}x_{23}x_{32} - (x_{11}x_{23}x_{32})x_{12}x_{24}x_{33} -
\]
\[
- (x_{33}x_{12}x_{21})x_{34}x_{13}x_{22})
\]
By example, d_{j}^f is the pseudo-minor of $p - 1$ order from matrix $x \in M_{n,p} (p = 4)$, formed with the first three rows of this matrix.

Theorem 15.
If in sample data matrix there exist at least one pseudo-minor of $p - 1$ order different from zero then exists uniquely fitting solution $a = (x_+^T x_+)^{-1} x_+^T y$ with $x_+ = \{x_1 * x_2, x_2 * x_3, ..., x_{p-1} * x_p\}$.

Proof
Let be the pseudo-minor of $p - 1$ order, different from zero, formed with the first $p - 1$ rows, without restrict the generality ($d_{p-1}^f \neq 0$).

With substitutions $x_j x_j+1 = z_j, \forall j \in 1, p - 1$, we obtain matrix $z = (z_{ij})_{1 \leq i \leq p, 1 \leq j \leq p - 1}$, $z_{ij} = x_{ij} \cdot x_{ij+1}$

We calculate the minor of $p - 1$ from z formed with the first $p - 1$ rows:

$$d_z = \sum_{\sigma \in S_{p-1}} (-1)^{\sigma} (z_{1\sigma(1)} \cdot z_{2\sigma(2)} \cdot ... \cdot z_{p-1\sigma(p-1)}) =$$

$$= \sum_{\sigma \in S_{p-1}} (-1)^{\sigma} (x_{1\sigma(1)} \cdot x_{1\sigma(1)+1} \cdot x_{2\sigma(2)} \cdot x_{2\sigma(2)+1}) \cdot ... \cdot (x_{p-1\sigma(p-1)} \cdot x_{p-1\sigma(p-1)+1}) = d_{p-1}^f \neq 0$$

So $\text{rang } z = p - 1$ and $a = (z^T z)^{-1} z^T y = \left(x_+^T x_+\right)^{-1} x_+^T y$.

REFERENCES

Authors:

Nicoleta Breaz- „1 Decembrie 1918” University of Alba Iulia, str. N. Iorga, No. 13, Departament of Mathematics and Computer Science, email: nbreaz@lmm.uab.ro

Daniel Breaz- „1 Decembrie 1918” University of Alba Iulia, str. N. Iorga, No. 13, Departament of Mathematics and Computer Science, email: dbreaz@lmm.uab.ro