УДК 517.98

СЛАБОЕ ИНТЕГРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ
МАЖОРИРУЕМЫХ ОРТОГОНАЛЬНО АДДИТИВНЫХ ОПЕРАТОРОВ

А. Г. Кусраев, М. А. Плиев

§ 0. Введение

0.1. Введем необходимые обозначения: \(E \) и \(F \) — порядковые идеалы в \(K\)-пространствах \(L_0(\nu) \) и \(L_0(\mu) \) соответственно. Через \(\lambda \) обозначается произведение мер \(\nu \otimes \mu \). \(X \) — сепарабельное банахово пространство; \(\mathcal{A} \) — счетное вспомогательное множество в \(X \) такое, что \(\|x\| \in \mathcal{A}, \forall x \in X \); \(Y \) — банахово пространство такое, что существует сепарабельное нормирующее подпространство \(Z \) в \(Y^* \) и \(Y \subset Z^* \); \(E(X) \) и \(F_\lambda(Y, Z) \) — пространства сильно и слабо измеримых вектор-функций, нормированных посредством \(E \) и \(F \). Через \(1_A \), \(1_B \) обозначим характеристические функции измеримых множеств. Оператор \(T \), действующий в порядковых идеалах \(E \) и \(F \) называется абстрактным оператором Урысона, если он ортогонально аддитивен и порядково ограничен. Множество всех абстрактных операторов Урысона из \(E \) в \(F \) обозначается \(U(E,F) \). Оператор \(T \in U(E,F) \) называется положительным, если \(T e \geq 0, \forall e \in E \). Конус положительных операторов задает частичный порядок на \(U(E,F) \). Если \(E \) векторная решетка, а \(F \) пространство Канторовича, то \(U(E,F) \) будет порядково полной векторной решеткой. Пусть есть некоторый супремум, инфимум, модуль операторов вычисляется по формулам:

\[
(S \land T)(e) = \inf \{Se_1 + Te_2 : e_1 + e_2 = e; e_1 \perp e_2 \};
\]

\[
(S \lor T)(e) = \sup \{Se_1 + Te_2 : e_1 + e_2 = e; e_1 \perp e_2 \};
\]

\[
|T|(e) = \sup \{Te_1 - Te_2 : e_1 + e_2 = e; e_1 \perp e_2 \}.
\]

Введем нужное для дальнейшего изложения множество \(U_{\text{sim}}(E,F) \). Будем говорить, что оператор \(T \in U_{\text{sim}}(E,F) \) принадлежит \(U_{\text{sim}}(E,F) \), если \(T \) возрастает на \(E_+ \) и \(T(-e) = Te \).

© 1999 Кусраев А. Г., Плиев М. А.
Операторы, принадлежащие U_{sim}, называются симметричными. Оператор G, действующий из РНП (V, E) в РНП (W, F) называется мажорируемым оператором Урысона, если G ортогонально аддитивен и существует $T \in U_{\text{sim}}(E, F)$ такой, что выполняется каноническое неравенство:

$$|Gv| \leq |T||v|.$$

0.2. Рассмотрим один класс необходимых в дальнейшем вектор-функций. Пусть (A, Σ_1, ν) и (B, Σ_2, μ) — пространства с σ-конечными мерами, а $U : B \times A \times X \to Y$. Будем говорить, что функция U принадлежит классу \mathfrak{R}, если U удовлетворяет следующим условиям:

1) $U(s, t, 0) = 0$ λ-н.в. для $(s, t) \in B \times A$;
2) $U(\cdot, \cdot, x)$ будет Z-слабо измеримой для всех $x \in X$;
3) $U(s, t, \cdot)$ λ-н.в. Z-слабо равномерно непрерывна на каждом замкнутом ограниченном шаре X.

С каждой такой вектор-функцией связем ее решеточную норму по правилу:

$$|U|(s, t, r) := \sup \{|\langle z, U(s, t, x) \rangle| : \|x\| \leq r; \ x \in \mathfrak{A}; \|z\| \leq 1; \ z \in Z\}.$$

Возьмем теперь сильно измеримую вектор-функцию $\bar{u} : A \to X$, и предположим, что для всех $z \in Z$ и почти всех $s \in B$ существует интеграл

$$\omega(s, z) = \int_A \langle z, U(s, t, \bar{u}(t)) \rangle \, dv(t)$$

и линейный функционал $z \to \omega(z, s)$ непрерывен при почти всех $s \in B$. Тогда определена слабо измеримая вектор-функция $s \to \omega(s, z)$. Далее класса эквивалентности вектор-функции \bar{u} обозначим через $T\bar{u}$ класс эквивалентности вектор-функции $s \to \omega(s, \cdot)$. Если $T\bar{u}$ существует и $[T\bar{u}] \in F$, то определен ортогонально аддитивный оператор $T : E(X) \to F_s(Y, Z)$. При этом говорят, что определен слабый интегральный оператор T с ядром U и, допуская некоторую вольность, пишут

$$\langle z, T\bar{u} \rangle(s) = \int_A \langle z, U(s, t, \bar{u}(t)) \rangle \, dv(t).$$

§1. Условия мажорируемости слабого интегрального оператора

1.1. В этом параграфе мы получим критерий мажорируемости слабого интегрального оператора. Для решения поставленной задачи нам потребуются некоторые вспомогательные конструкции. Пусть F — векторная решётка, а E — векторная подрешётка в F. Оператор $T : E_s(Y, Z) \to F_s(Y, Z)$ называется оператором коммутирующим с проекторами, если $T \circ \pi = \pi \circ T$ для любого порядкового проектора

$$\pi : F_s(Y, Z) \to F_s(Y, Z),$$

такого что $\pi(E_s(Y, Z)) \subseteq E_s(Y, Z)$. Широкий класс операторов коммутирующих с проекторами, которые действуют в пространствах вектор-функций, даст следующий пример. Рассмотрим вектор-функцию $N : A \times X \to Y$, удовлетворяющую следующим условиям:
1) $N(t,0) = 0$ для почти всех $t \in A$;
2) $N(\cdot,\tilde{f}(\cdot))$ — слабо измерим для любой слабо измеримой вектор-функции $\tilde{f} \in F_s(X)$.

Тогда оператор $T: E(X) \to L_0(\nu, X)$, определяемый формулой $T(\tilde{f})(t) = N(t,\tilde{f}(t))$, будет коммутируть с проекторами. Действительно, каждый проектор в пространстве $L_0(\nu, X)$ имеет вид $\pi f = f1_D$, где 1_D — характеристическая функция некоторого измеримого множества. Поэтому можно написать

$$(T \circ \pi)(\tilde{f})(t) = T(\tilde{f}1_D)(t) = N(s,\tilde{f}(t)1_D(t)) = N(t,\tilde{f}(t))1_D(t) = T(\tilde{f})(t)1_D(t) = (\pi \circ T)(\tilde{f})(t).$$

В [4] установлено, что оператор, коммутирующий с проекторами в РНП, ортогонально аддитивен и латерально непрерывен.

1.2. Лемма. Пусть $T: E(X) \to L_0(\nu)$ ортогонально аддитивный оператор. Тогда выполняются следующие условия.

1) Для любых конечных последовательностей $(\tilde{f}_i)_{i=1}^n; (\tilde{g}_i)_{i=1}^n \subseteq E(X)$ найдутся такие элементы $\tilde{u}, \tilde{v} \in E(X)$, что выполняются соотношения $|\tilde{u} - \tilde{v}| \leq \sup_{1 \leq i \leq n} |\tilde{f}_i - \tilde{g}_i|$ и $|T\tilde{u} - T\tilde{v}| = \sup_{1 \leq i \leq n} |T\tilde{f}_i - T\tilde{g}_i|$.

2) Для любых конечных последовательностей $(\tilde{f}_i)_{i=1}^n, (\tilde{g}_i)_{i=1}^n \subseteq E(X)$ и элементов $\tilde{u} \in E(X)$, $|\tilde{u}| = \sup_i |\tilde{f}_i|$ найдется элемент $\tilde{v} \in E(X)$, $|\tilde{v}| \leq \sup_{1 \leq i \leq n} |\tilde{g}_i|$, $|\tilde{u} - \tilde{v}| \leq \sup_{1 \leq i \leq n} |\tilde{f}_i - \tilde{g}_i|$, такой, что выполняются соотношения

$$\sup_{1 \leq i \leq n} (T\tilde{f}_i - T\tilde{g}_i) \geq T\tilde{u} - T\tilde{v} \geq \inf_{1 \leq i \leq n} (T\tilde{f}_i - T\tilde{g}_i).$$

< 1): Пусть $D^i = \{ t : T\tilde{f}_i(t) - T\tilde{g}_i(t) = \sup_i (T\tilde{f}_i - T\tilde{g}_i) \}$ ($i = 1, \ldots, n$) и $A^i = D^i \setminus (\cup_{k=1}^{i-1} D_k)$ для $i = 2, \ldots, n$. Тогда $\tilde{u} = \sum_{i=1}^n \tilde{f}_i1_{A^i}$, а $\tilde{v} = \sum_{i=1}^n \tilde{g}_i1_{A^i}$.

2): Пусть $C^i = \{ t : |\tilde{g}_i| = \sup_i |\tilde{g}_i| \}$ ($i = 1, \ldots, n$). Определим множество B_i следующим образом: $B^i = C^i \setminus (\cup_{k=1}^{i-1} C_k)$, где $i = 2, \ldots, n$. Ясно, что $\tilde{u} = \sum_{i=1}^n \tilde{f}_i1_{B_i}$. Элемент \tilde{v} определяем равенством $\tilde{v} = \sum_{i=1}^n \tilde{g}_i1_{B_i}$. Доказательство завершено. >

1.3. Через $E^*(X)$ обозначим множество вектор-функций $\tilde{h}(s,t)$ таких, что

$$\|\tilde{h}(s,t)\| \in E \otimes L_\infty(\nu).$$

Лемма. Пусть $T: E(X) \to F_s(Y,Z)$ мажорируемый слабый интегральный оператор. Тогда для любых $\tilde{h} \in E^*(X)$, $z \in Z$, $\|z\| \leq 1$ и почти всех $s \in B$ конечна функция

$$s \mapsto \int_{A} |\langle z, U(s,t,\tilde{h}(s,t)) \rangle| d\nu(t).$$
Достаточно показать, что интеграл существует для всех вектор-функций \(\vec{h}(s, t) \) таких, что \(|\vec{h}(s, t)| \leq |\vec{g}(t)|1_B(s), \) где \(\vec{g} \in E(X) \). Так как оператор \(T \) — мажорирующий, то \(\mu \)-почти всюду выполняется каноническое неравенство

\[
\int_A \langle z, U(s, t, \vec{g}(t)) \rangle d\nu(t) = \langle z, T\vec{g}(s) \rangle \leq |T\vec{g}|(s) \leq |T||\vec{g}|(s).
\]

В силу монотонности оператора \(|T| \) это неравенство будет выполняться и для всех \(\vec{f} \in E(X), |\vec{f}| \leq |\vec{g}| \). Для каждого \(z \in Z, \|z\| \leq 1 \) введем вспомогательную функцию \(V_z : B \times A \times R \to R \) такую, что

\[
V_z(s, t, r) := |\langle z, U(s, t, r\vec{g}(t)) \rangle|.
\]

Тогда можно записать

\[
\sup \left\{ \int_A |\langle z, U(s, t, \vec{f}(t)) \rangle| d\nu(t) : |\vec{f}| \leq |\vec{g}|; z \in Z; \|z\| \leq 1 \right\} =
\]

\[
= \sup \left\{ \int_A V_z(s, t, \varphi(t)) d\nu(t) : \varphi(t) \leq 1_A(t); z \in Z; \|z\| \leq 1 \right\}.
\]

Значит будет справедлива формула

\[
\sup \left\{ \int_A |\langle z, U(s, t, \vec{h}(s, t)) \rangle| d\nu(t) : |\vec{h}(s, t)| \leq |\vec{g}(t)|1_B(s); z \in Z; \|z\| \leq 1 \right\} =
\]

\[
= \sup \left\{ \int_A V_z(s, t, \psi(s, t)) d\nu(t) : \psi(s, t) \leq 1_{B \times A}(s, t); z \in Z; \|z\| \leq 1 \right\}.
\]

Покажем, что

\[
\sup \left\{ \int_A V_z(s, t, \psi(s, t)) : \psi(s, t) \leq 1_{B \times A}(s, t); z \in Z; \|z\| \leq 1 \right\} \leq |T||\vec{g}|.
\]

Пусть

\[
\psi(s, t) = \sum_{k=1}^r \alpha_k 1_{B \times A}(s, t) = \sum_{i=1}^n \sum_{j=1}^{l(i)} \alpha_{ij} 1_{A_{ij} \times B_i}(s, t).
\]

Здесь \(A_{ij}, B_i \) измеримые попарно дизъюнктивные подмножества \(A \) и \(B \) соответственно, а \(\alpha_{ij} \in R, \|\alpha_{ij}\| \leq 1 \). Теперь имеем

\[
\int_A V_z \left(s, t, \sum_{j=1}^{l(i)} \alpha_{ij} 1_{A_{ij} \times B_i}(s, t) \right) d\nu(t) \leq 1_{B_i}(s) \int_A V_z \left(s, t, \sum_{j=1}^{l(i)} \alpha_{ij} 1_{A_{ij}}(t) \right) d\nu(t) \leq 1_{B_i}(s) |T||\vec{g}| \leq |T||\vec{g}|.
\]
Пусть \(\psi \) такая функция, что \(\psi = \sigma_1 - \sigma_2 \), где \(\sigma_i \geq 0 \), \(i = 1, 2 \) и для каждой \(\sigma_i \) найдется последовательность простых функций \((p^n_i)_{n=1}^{\infty} \), что \(0 \leq p^n_i \uparrow \sigma_i \). Далее \(p_n = p^n_1 \wedge 1_{B \times A} - p^n_2 \wedge 1_{B \times A} \). Тогда будет справедлива формула

\[
\int_A V_z(s, t, p_n(s, t)) d\nu(t) \leq |T| |\mathcal{G}|.
\]

Возьмем произвольное измеримое множество \(D \subset B \) и примем теоремы Фубини и Фату, получаем:

\[
\int_{A \times D} V_z(s, t, \psi(s, t)) d\lambda \leq \liminf_{n \to \infty} \int_{A \times D} V_z(s, t, p_n(s, t)) d\lambda = \int_D |T| |\mathcal{G}| d\nu;
\]

\[
\int_{A \times D} V_z(s, t, \psi(s, t)) d\lambda \leq \int_D |T| |\mathcal{G}| d\mu.
\]

Так как множество \(D \subset B \) произвольно, то получаем:

\[
\int_A V_z(s, t, \psi(s, t)) d\nu \leq |T| |\mathcal{G}|.
\]

Пусть \(\psi(s, t) \) произвольная функция, такая что \(|\psi(s, t)| \leq 1_{B \times A}(s, t) \). Возьмем ее отрицательную и положительную части. Тогда найдутся последовательности \((\sigma_n^1)_{n=1}^{\infty} \), \(i = 1, 2 \) простых функций, таких что \(\sigma_n^1 \uparrow \psi_+, \sigma_n^2 \uparrow \psi_- \). Тогда \(\sigma_n = \sigma_n^1 \wedge 1_{B \times A} - \sigma_n^2 \wedge 1_{B \times A} \). Отсюда следует, что \(|\sigma_n| \leq 1_{B \times A} \) и \(\lim_n \sigma_n(s, t) = \psi(s, t) \). Используя аргументы, изложенные выше, получаем:

\[
\int_A V_z(s, t, \psi(s, t)) d\nu \leq |T| |\mathcal{G}|.
\]

Доказательство закончено. \(\triangleright \)

1.4. В этом пункте докажем одно важное утверждение. С каждой вектор-функцией \(\tilde{g} \in E(\mathcal{X}) \) свяжем некоторую функцию двух переменных:

\[
M_{\tilde{g}}(s, t) = \sup \left\{ \|\tilde{g}(s, t)\| : \|h\|(s, t) \leq |\tilde{g}|(t)1_B(s); z \in Z; \|z\| \leq 1 \right\}.
\]

Лемма. Определенная выше функция \(M_{\tilde{g}}(s, t) \) совпадает с \(|U| (s, t, |\tilde{g}(t)|) \) \(\lambda \) почти всюду.

< Доказательство разобьем на несколько этапов. 1) Пусть \(\bar{g}(s, t) = x1_D(t) \), где \(D \subset A \). Далее можем написать

\[
\sup \left\{ \|\tilde{g}(s, t)\| : \|\tilde{h}\|(s, t) \leq \|x\|1_{AXD}(s, t); \tilde{h} \in E^*(\mathcal{X}); z \in Z; \|z\| \leq 1 \right\} \leq |U|(s, t, \|x\|).
\]
Указанное неравенство выполняется \(\lambda \)-почти всюду на множестве \(D \times B \). С другой стороны,

\[
\sup \left\{ \left| \langle z, U(s,t,\tilde{h}(s,t)) \rangle \right| : \left| \tilde{h}\right| (s,t) \leq \|x\|_{1D \times B}; \tilde{h} \in E^\ast(X); z = Z; \|z\| \leq 1 \right\} \geq \\
\sup \left\{ \left| \langle z, U(s,t,x'1D \times B(s,t)) \rangle \right| : \|x'\| \leq \|x\|, x' \in X'; z = Z; \|z\| \leq 1 \right\}.
\]

Следовательно, можно написать \(M_{x1D} = \|U\|_{(s,t,\|x\|)} \).

Пусть теперь \(\tilde{g}(t) = \sum_{i=1}^{n} x_i 1_{D_i}, \) где \((D_i)_{i=1}^{n} \) — попарно дисъюнктивные измеримые множества, принадлежащие \(A \). Тогда если \(\left| \tilde{h}\right| \leq \|\tilde{g}\|_B, \) то \(\tilde{h} = \sum_{i=1}^{n} \tilde{h}_i, \) где \(\left| \tilde{h}_i\right| \leq \|x_i\|_{1_{D_i} \times B}. \) Отсюда следует

\[
M_{\tilde{g}}(s,t) = \sup \left\{ \left| \langle z, U(s,t,\tilde{h}(s,t)) \rangle \right| : \left| \tilde{h}(s,t)\right| \leq \tilde{g}(t)1_B(s); \tilde{h} \in E^\ast(X); z = Z; \|z\| \leq 1 \right\} = \\
= \sup \left\{ \left| \langle z, U(s,t,\sum_{i=1}^{n} x_i 1_{D_i \times B}) \rangle \right| : \|\tilde{h}_i\| \leq \|x_i\|_{1_{D_i} \times B}; z = Z; \|z\| \leq 1 \right\} = \\
= \sum_{i=1}^{n} \|U\|_{(s,t,\|x_i\|_{1_{D_i}}(t))} = \|U\|_{(s,t,\|\tilde{g}\|)}(t).
\]

Пусть, наконец, функция \(\tilde{g}(t) \in E(X) \) произвольна. Тогда найдется последовательность простых функций \(\{\tilde{g}_n\}_{n=1}^{\infty} \subset E(X) \) таких, что \(\|\tilde{g}_n\| \uparrow \|\tilde{g}\|. \) Ясно, что \(M_{\tilde{g}_n}(s,t) \leq M_{\tilde{g}}(s,t) \) \(\lambda \)-почти всюду и \(M_{\tilde{g}_n} \uparrow. \) Докажем, что \(M_{\tilde{g}}(s,t) = \sup_n M_{\tilde{g}_n}. \) Действительно, пусть \(H(s,t) \geq M_{\tilde{g}_n}(s,t). \) Предположим, что \(\left| \tilde{h}\right| \leq \|\tilde{g}\|_B \) и введем вектор-функцию \(\tilde{h}_n \) такую, что \(\left| \tilde{h}_n\right| = \|\tilde{g}_n\|_B \wedge \left| \tilde{h}\right|. \) Тогда

\[
\left| \langle z, U(s,t,\tilde{h}_n) \rangle \right| \leq M_{\tilde{g}_n}(s,t) \leq H(s,t).
\]

Так как \(\|\tilde{g}_n\| \uparrow \|\tilde{g}\|, \) то \(\left| \langle z, U(s,t,\tilde{h}_n) \rangle \right| \leq H(s,t). \) Переходя к супремуму по всем вектор-функциям \(\tilde{h}, \left| \tilde{h}\right| \leq \|\tilde{g}\|_B, \) получаем требуемое. \(\triangleright \)

1.5. Теорема. Пусть \(T : E(X) \to F_i(Y, Z) \) — слабый интегральный оператор.

Тогда следующие условия эквивалентны:

1) \(T \) — мажорируемый оператор;

2) из \(E \in F \) определен интегральный оператор Урысона \(S \) с ядром \(|U| \). При этом \(S \) будет точкой мажорантного оператора \(T. \)

<1) \(\Rightarrow \) 2): Зафиксируем вектор-функцию \(\tilde{g} \in E(X). \) Покажем, что для некоторой вектор-функции \(\tilde{h}_0 \) такой, что \(\tilde{h}_0 \in E^\ast(X) \) и \(\tilde{h}_0(s,t) \leq \tilde{g}(t)1_B(s), \) выполняется равенство

\[
M_{\tilde{g}}(s,t) = \sup \left\{ \left| \langle z, U(s,t,\tilde{h}_0(s,t)) \rangle \right| : z \in Z; \|z\| \leq 1 \right\}.
\]

Введем подходящие обозначения

\[
V(s,t,\tilde{h}(s,t)) := \sup \left\{ \left| \langle z, U(s,t,\tilde{h}(s,t)) \rangle \right| : z \in Z; \|z\| \leq 1 \right\}.
\]
Слабое интегральное представление мажорируемых операторов

Существует такое счетное множество $(\lambda_n)_{n=1}^{\infty}$, $|\lambda_n| \leq |g| 1_B$, что

$$M_\lambda(s, t) = \sup_n \{V(s, t, \lambda_n(s, t))\}.$$

Тогда оператор $G : E^*(X) \to L_0(\lambda)$ такой, что $(G\tilde{h})(s, t) := V(s, t, \tilde{h}(s, t))$ будет коммутировать с проектором. Рассмотрим две конечные последовательности $(\lambda_1, \ldots, \lambda_n)$, $(0, \ldots, 0)$ и воспользуемся леммой 1.2. Тогда существуют $\tilde{h}_n \in E^*(X)$ такие, что

$$|\tilde{h}_n| \leq \sup\{|\lambda_i|; i = 1, \ldots, n\}. \quad \text{Кроме того,} \quad G\tilde{h}_n = \sup\{G\lambda_i; i = 1, \ldots, n\}.$$

Последовательность $(G\tilde{h}_n)_{n=1}^{\infty}$ будет монотонно возрастающей, с супремумом $M_\lambda(s, t)$. Пусть $\psi(s, t) := \lim_{n \to \infty} |\tilde{h}_n|(s, t)$ и $\tilde{h}_0(s, t)$ таков вектор-функция, что $|\tilde{h}_0|(s, t) = \psi(s, t)$. Рассмотрим последовательность (\tilde{h}_n) для любого $n \in N$. В силу регулярности пространства $L_0(\mu)$ существует такой номер $j(n) \geq n$, что $|\tilde{h}_n|(s, t) = \lim_{n \to \infty} |\tilde{p}_n|(s, t)$, где \tilde{p}_n такая вектор-функция, что справедливо равенство $|\tilde{p}_n| = |\tilde{h}_n| \vee \cdots \vee |\tilde{h}_{j(n)}|$. Опять применением леммы 1.2 к конечным последовательностям $\{\tilde{h}_n, \ldots, \tilde{h}_{j(n)}\},\{0, \ldots, 0\}$. Тогда можно написать

$$G\tilde{h}_{j(n)} = G\tilde{h}_n \vee \cdots \vee G\tilde{h}_{j(n)} \geq G\tilde{p}_n \geq G\tilde{h}_n \wedge \cdots \wedge G\tilde{h}_{j(n)}.$$

Так как $|\tilde{h}_0|(s, t) = \lim_{n \to \infty} |\tilde{p}_n|(s, t)$, то мы имеем

$$G\tilde{h}_0(s, t) = \lim_{n \to \infty} G\tilde{p}_n(s, t) \geq \lim_{n \to \infty} G\tilde{h}_n(s, t).$$

Следовательно, $G\tilde{h}_0(s, t) = M_\lambda(s, t) = [U](s, t, [f](t)).$

Докажем импликацию 2) \Rightarrow 1).

$$\langle z, T\tilde{f} \rangle(s) = \int_A \langle z, U(s, t, \tilde{f}(t)) \rangle d\mu(t) \leq \int_A [U](s, t, [f](t)) d\mu(t).$$

Переходя к супремуму по всем $z \in Z$, $|z| \leq 1$ получим

$$|T\tilde{f}|(s) \leq \int_A [U](s, t, [f](t)) d\mu(t).$$

Это означает, что оператор T — мажорируем и $|T| \leq W_U$, где W_U — интегральный оператор Урысона с ядром $[U]$. Но

$$\int_A [U](s, t, [f](t)) d\mu(t) = \sup \left\{ \int_A [\langle z, U(s, t, \tilde{h}_0(s, t)) \rangle] d\mu(t) : z \in Z \right\} \leq [T][f](s).$$
Отсюда получаем, что \(|T| = W_U \).

Ниже мы получим критерий слабого интегрального представления мажорируемого оператора, определенного на пространстве сумпеченных вектор-функций.

1.6. Через \(E^l(X) \) обозначим множество измеримых вектор-функций вида \(\tilde{p} = \sum_{i=1}^{n} x_i 1_{A_i}(t) \), где \(A_i \cap A_j = \emptyset \), \(A_i \in \Sigma_1 \), \(\|x_i\| \in \mathbb{R} \), \(A_i \subset \text{supp}E \). РНП \(E^l(X) \) нормировано векторной решеткой \(E^l \), где \(E^l = \{ \sum_{i=1}^{n} \lambda_i 1_{A_i} : \lambda_i \in \mathbb{Q} \} \). Используя теперь результаты, полученные в [5], выводим следующую теорему.

Теорема. Пусть \(T : E^l(X) \rightarrow F_s(Y, Z) \) — мажорируемый ортогонально аддитивный оператор. Тогда следующие условия эквивалентны:

1) \(T \) — слабый интегральный оператор;
2) для любой ограниченной последовательности \((\tilde{v}_n)_{n=1}^{\infty} \subset E^l(X) \) такой, что \(|\tilde{v}_n| \overset{(o)}{\to} 0 \) следует \(|T \tilde{v}_n| \overset{(o)}{\to} 0 \).

Напомним, что в порядке идеалов пространства измеримых почти всюду конечных функций (*)-сходимость совпадает с сходимостью по мере, а (о)-сходимость с сходимостью почти всюду. Пусть \(T \) — слабый интегральный оператор. Тогда \([T] \) будет интегральным оператором Урысона из \(E^l \) в \(F \). В [5] доказано, что для вышеперечисленных пространств интегральные операторы Урысона переводят последовательности сходящиеся по мере в последовательности, сходящиеся почти всюду. Воспользуемся каноническим неравенством

\[
|T \tilde{v}_n| \leq \|T\| \|\tilde{v}_n\| \Rightarrow \|T\| \|\tilde{v}_n\| \overset{(o)}{\to} 0.
\]

Таким образом переход 1) \(\Rightarrow \) 2) установлен. Докажем импликацию 2) \(\Rightarrow \) 1). Пусть оператор \(T \) удовлетворяет условию 2) теоремы. Воспользуемся частичной разложимостью мажорантной нормы. Заметим, что в [5] установлено, что для симметричного оператора его проекция на интегральную компоненту также будет симметричным оператором. Теперь можем написать

\[
[T] = S_1 + S_2; \quad T = T_1 + T_2; \quad [T_1] = S_1; \quad [T_2] = S_2; \quad S_1 \in (E^l \cap F)_{\perp \perp}; \quad S_2 \in (E^l \cap F)_{\perp}.
\]

Здесь \((E^l \cap F)_{\perp \perp} \) — компонента интегральных операторов, действующих между пространствами \(E^l \) и \(F \). Ясно, что оператор \(T_2 = T - T_1 \) обладает свойством 2). Покажем, что \(T_2 \) равен нулю. Возьмем произвольный элемент \(\tilde{u} \in E^l(X) \) и положим \(|\tilde{u}| = e \). Пусть

\[
Re := 1_B(s) \int_{A} |e(t)|d\nu(t), \quad e \in E^l.
\]

Возьмем для простоты \(e = q1_{A}(t) \).

\[
([T_2] \wedge R)e = \inf[\{T_2|e - e_1\} + Re_1 : e_1 \perp (e - e_1)] = 0.
\]

Введем множество \(D_m \subset L_0(\mu) \) такие, что

\[
D_m := \{[T_2]|e - e_1\} + Re_1 : Re_1 \leq \frac{1}{m}\}.
\]
Слабое интегральное представление мажорируемых операторов

Тогда справедливы включения $D_{m+1} \subset D_m$ и $\inf(D_m) = 0$. В силу регулярности K-пространства $L_0(\mu)$ найдутся такие конечные множества D_m', что $D_m' \subset D_m$ и $\lim_{n \to \infty} \inf(D_m') = 0$. Построим последовательность (e_n'), перенумеровав элементы (e_n), попадающие в D_n'. Ясно, что последовательность (e_n') сходится к нулю по мере. Построим теперь последовательность $(\tilde{u}_n) \subset E'((X)$ такую, что $|\tilde{u}_n| = e_n$. Такая последовательность строится следующим образом: $\tilde{u}_n = 1_{\text{прдн}} u$. Так как последовательность (\tilde{u}_n) сходится к нулю по мере, то последовательность $(\{T_2 \tilde{u}_n\})$ сходится к нулю почти всюду. Пусть теперь K-пространство $L_0(\mu)$ реализовано в виде $C_\infty(Q)$. Тогда F будет фундаментом в $C_\infty(Q)$. Возьмем открытое множество $Q_0 \subset Q$ такое, что

$$
\lim_{n \to \infty} |T_2 \tilde{u}_n'(t)| = 0; \quad \inf \{ |T_2|(e - e_n') + R(e_n') \} = 0.
$$

Переходим если надо к подпоследовательности $(e_n'(k))$, можем написать:

$$
\lim_{n \to \infty} |T_2|(e - e_n'(k))(t) = - \lim_{n \to \infty} R(e_n'(k))(t);
$$

$$
|T_2 \tilde{u}'(t)| \leq |T_2(\tilde{u} - \tilde{u}_n'(k))|(t) + |T_2 \tilde{u}_n'(k)(t)| \leq |T_2|(e - e_n'(k))(t) + |T_2 \tilde{u}_n'(k)|.
$$

Теперь имеем, $|T_2 \tilde{u}'(t)| = 0$ для всех $t \in Q_0$. В силу произвольности $\tilde{u} \in E'((X)$ получаем $T_2 = 0$. Итак мы получили, что у оператора T, удовлетворяющего условию 2) теоремы, точная мажоранта является интегральным оператором. Так как произвольный элемент $\tilde{u} \in E_X$ имеет вид $\tilde{u} = \sum_{i=1}^{n} x_i 1_{D_i}$, а оператор T ортогонально аддитивен, то имеем следующее:

$$
\langle z, T(x1_D(t)) \rangle(s) \leq \|z\| |T|(\|x\|1_D(t))(s) \mu\text{-п.в.}
$$

Так как $|T|$ — интегральный оператор, а интегральные операторы образуют компоненту в $E'((X)$), то справедлива формула

$$
\langle z, T(x1_D(t)) \rangle(s) = \int_D w_z(s, t, x) d\nu(t).
$$

Определим теперь вектор-функцию $U : B \times A \times \mathbb{A} \to Y$ следующим образом:

$$
\langle z, U(s, t, x) \rangle := w_z(s, t, x).
$$

Равенство предполагается для всех $x \in \mathbb{A}$, $z \in \mathbb{Z}$, $\|z\| \leq 1$ и почти всех $(t, s) \in B \times A$. Ясно, что функция U удовлетворяет всем условиям, налагаемым на ядро. Слабое интегральное представление построено. \triangleright

§2. Критерий слабого интегрального представления

В настоящей главе получим условия слабого интегрального представления для операторов, определенных на всем пространстве $E(X)$. В качестве предварительного результата докажем следующую теорему.
2.1. Теорема Пусть $T : E(X) \to F_s(Y, Z)$ — мажорируемый оператор Урысона и $T|_{E^1(X)}$ слабый интегральный оператор. Кроме того, для любых последовательностей $(f_n), (g_n) \subset E(X)$ таких, что

$$
|f_n|, |g_n| \leqslant g, \quad n \in N, \quad g \in E_+,
$$

справедлива импликация

$$
|f_n - g_n| \overset{[2]}{\to} 0 \Rightarrow \left| \int f_n - T g_n \right| \overset{[2]}{\to} 0.
$$

Тогда функция $U(s, t, \cdot)$ Z-слабо равномерно непрерывна на множестве $\mathfrak{A} \cap \overline{B}(c)$, λ-н. в. для $(t, s) \in B \times A$. Здесь

$$
\overline{B}(c) = \{ x \in X : \| x \| \leqslant c, \quad c \in Q \}.
$$

Для каждого $c \in Q$ определим множество $D_c \subset B \times A$ такое, что если $(t, s) \in D_c$, то $U(s, t, \cdot)$ Z-слабо равномерно непрерывная функция на $\mathfrak{A} \cap \overline{B}(c)$. Достаточно показать, что $\lambda(D_c) = 0$. Будем считать, что $1_A(t) \in E\ell$, а так как $T|_{E^1(X)}$ — слабый интегральный оператор, то и $[T]$ будет интегральным оператором Урысона из $E\ell$ в F. Тогда, функция $[U]$ будет ядром оператора $[T]$ и для любого $p \in E\ell(X)$, $|p| \leqslant c1_A(t)$ выполняются соотношения:

1) $\sup \{|\langle z, U(s, t, p(t) \rangle| : z \in Z, \| z \| \leqslant 1 \} \leqslant \|U\|_1(s, t, c1_A(t))$;
2) Функция $U_l(s, t, c1_A(t))$ ν-интегрируема для почти всех $s \in B$;
3) Функция $h_1 = \int_{\mathfrak{A}} U_l(s, t, c1_A(t))d\nu(t)$ лежит в F;
4) Существует и конечен интеграл $\int_B h(s)d\mu(s)$, $\forall n \in N$, $B \in \mu_{n-1}B_n$.

Все вышеизложенное разделим на несколько этапов.

Этап 1. Определим на $E\ell(X)$ норму для $\tilde{p} \in E\ell(X)$ $\tilde{p} = \sum_{i=1}^{n} x_i 1_{A_i}(t)$, $\|\tilde{p}\| = \max_{1 \leqslant i \leqslant n} \|x_i\|$. Рассмотрим отображение $F : E\ell(X) \to R$, где

$$
\Phi \tilde{p} := \sup \left\{ \int_{B \times A} \langle z, U(s, t, p(t)) \rangle d\lambda(t, s) \right\}.
$$

Супремум берется по всем $z \in Z$, $\| z \| \leqslant 1$ и $|p| \leqslant c1_A(t)$. Интеграл существует в силу указанных выше условий мажорируемости. Покажем, что отображение Φ равномерно непрерывно. Это будет означать, что для любых $(\tilde{p}_n), (\tilde{g}_n)$ таких, что $|\tilde{p}_n|, |\tilde{g}_n| \leqslant c1_A(t)$, из условия $\|\tilde{p}_n - \tilde{g}_n\| \to 0$ следует, что $|\Phi \tilde{p}_n - \Phi \tilde{g}_n| \to 0$. Действительно, так как $\|\tilde{p}_n - \tilde{g}_n\| \to 0$, то $|\tilde{p}_n - \tilde{g}_n| \overset{[2]}{\to} 0$. Следовательно,

$$
\| \int_B T\tilde{p}_n - T\tilde{g}_n \| \overset{[2]}{\to} 0, \quad \int_B \| \int_B T\tilde{p}_n - T\tilde{g}_n \| d\mu(s) \leqslant 2h(s).
$$

Используя, теорему Б. Леви, получаем $|\Phi \tilde{p}_n - \Phi \tilde{g}_n| \to 0$.

Этап 2. Рассмотрим пространство

$$
\tilde{E}\ell(X) := \left\{ \tilde{p}^* : \tilde{p}^*(s, t) = \sum_{i=1}^{n} x_i 1_{D_i}(s, t); \| x_i \| \in Q; D_i \in B \times A \right\}.
$$
Слабое интегральное представление мажорируемых операторов

Определим на этом пространстве норму: $\|p\| = \max_{1 \leq i \leq n} \|x_i\|$, и по свойству операторов Урысона, действующих из E^l в F, получаем: если $|p(s, t)| \leq c_{1_{B \times A}}(t, s)$, то

$$
\sup \{|z, U(s, t, p(s, t))|; z \in Z; \|z\| \leq 1\} \leq |U|(s, t, c_{1_{B \times A}}(s, t)).
$$

Отображение Φ расширим до $\Phi^*: \dot{E}^l(X) \to R$ так, что

$$
\Phi^*p^* = \sup \left\{ \int_{B \times A} \langle z, U(s, t, p(s, t)) \rangle d\lambda(t, s); z \in Z; \|z\| \leq 1 \right\}.
$$

Здесь $|p(s, t)| \leq c_{1_{B \times A}}(t, s)$. Покажем, что это отображение равномерно непрерывно. Рассмотрим $p^*, g^* \in \dot{E}^l(X)$ такие, что $|p^*| \leq c_{1_{B \times A}}(t, s)$, $|g^*| \leq c_{1_{B \times A}}$. Требуется показать, что для всех $\varepsilon > 0, \exists \delta > 0$, что $|p^* - g^*| < \delta$, тогда $|\Phi^*p^* - \Phi^*g^*| < \varepsilon$. Пусть

$$
p^* = \sum_{i=1}^{m} x_i 1_{D_i}(t, s); \quad g^* = \sum_{i=1}^{m} x'_i 1_{D_i}(t, s)
$$

где λ измеримые множества (D_i) попарно дизъюнктивы. Каждое множество D_i есть конечное объединение обобщенных прямоугольников, тогда

$$
p^* = \sum_{r=1}^{r_{(c)}} \sum_{i=1}^{l_{(r)}} x_r 1_{B \times A_{ri}}(t, s); \quad g^* = \sum_{r=1}^{r_{(c)}} \sum_{i=1}^{l_{(r)}} x'_r 1_{B \times A_{ri}}; \quad \|x_r\| \leq c; \quad \|x'_r\| \leq c.
$$

Множества $(B_r)_{r=1}^{m}$ попарно дизъюнктивы, и для каждого $r = 1, \ldots, m$ множества $(A_{ri})_{i=1}^{l_{(r)}}$ попарно дизъюнктивы. Тогда можно записать

$$
\left\| \sum_{r=1}^{r_{(c)}} \sum_{i=1}^{l_{(r)}} x_r 1_{A_{ri}} - \sum_{i=1}^{l_{(r)}} x'_r 1_{A_{ri}} \right\| < \delta; \quad r = 1, \ldots, m.
$$

Будет справедлива формула

$$
\sup \left\{ \int_{B \times A} \langle z, U(s, t, \sum_{i=1}^{l_{(r)}} x_r 1_{A_{ri}}) - U(s, t, \sum_{i=1}^{l_{(r)}} x'_r 1_{A_{ri}}) \rangle d\lambda(t, s); z \in Z; \|z\| \leq 1 \right\} = \left| \Phi^* \left(\sum_{i=1}^{l_{(r)}} x_r 1_{A_{ri}} \right) - \Phi^* \left(\sum_{i=1}^{l_{(r)}} x'_r 1_{A_{ri}} \right) \right| < \varepsilon.
$$

Тогда

$$
|\Phi^*p^* - \Phi^*g^*| = \sup \left\{ \int_{B \times A} \left[\sum_{r=1}^{m} 1_{B_r(s)} \left(\langle z, U(s, t, \sum_{i=1}^{l_{(r)}} x_r 1_{A_{ri}}) \rangle - \langle z, U(s, t, \sum_{i=1}^{l_{(r)}} x'_r 1_{A_{ri}}) \rangle \right) \right] d\lambda(t, s); z \in Z; \|z\| \leq 1 \right\} < \varepsilon.
$$
Теперь будем считать, что множества \((D_i)_{i=1}^n\) произвольны. Так как функция \(\|U\|_{1}(x,t,c1_{\Lambda}(t))\) \(\lambda\)-интегрируема, то для каждого \(\eta > 0\) существует \(\kappa > 0\) такое, что если \(\Omega\) есть \(\lambda\)-измеримое множество и \(\lambda(\Omega) < \kappa\), то справедлива формула

\[
\int_{\Omega} \|U\|_{1}(s,t,c1_{\Lambda}(t))d\lambda(t,s) \leq \frac{\kappa}{2n}.
\]

Замкнем \(k > 0\) и определим конечное объединение попарно дизъюнктивных множеств \((\Omega_i)_{i=1}^n\) таких, что \(\Omega_i\) есть конечное объединение обобщенных прямоугольников и \(\lambda(\Omega_i \Delta D_i) < \kappa\). Тогда справедлива формула

\[
\int_{\Omega_i \Delta D_i} \langle z, U(s,t,x_i) d\lambda(t,s) < \frac{\kappa}{2n}.
\]

Покажем, что

\[
\left| \Phi^*(\sum_{i=1}^{n} x_i 1_{\Omega_i}) - \Phi^*(\sum_{i=1}^{n} x'_i 1_{\Omega_i}) \right| < \varepsilon.
\]

Действительно,

\[
\left| \Phi^* p^* - \Phi^* g^* \right| \leq \left| \Phi^*(\sum_{i=1}^{n} x_i 1_{\Omega_i}) - \Phi^*(\sum_{i=1}^{n} x'_i 1_{\Omega_i}) \right| + \left| \Phi^*(\sum_{i=1}^{n} x_i 1_{D_i}) - \Phi^*(\sum_{i=1}^{n} x'_i 1_{D_i}) \right| < \varepsilon + \kappa.
\]

Так как \(\kappa\) произвольно, то \(\left| \Phi^* p^* - \Phi^* g^* \right| \leq \varepsilon\).

Этап 3. Для каждого \(\lambda\)-измеримого множества \(D \subset B \times A\), и для каждого \(\delta > 0\) определим

\[
\omega(D, \delta, c) := \sup \left\{ \int_{D} \langle z, U(s,t,x) \rangle d\lambda(t,s) \right\}.
\]

Здесь \(\|x\|, \|x'\| \in Q\), \(\|x - x'\| < \delta\), \(\|x\|, \|x'\| < c\); \(z \in Z\); \(\|z\| \leq 1\). Тогда для каждого \(\delta > 0\) определим

\[
\omega(\delta, c) := \sup \left\{ \sum_{i=1}^{n} \omega(D_i, \delta, c); D_i \cap D_j = \emptyset; i \neq j; B \times A = \bigcup_{i=1}^{n} D_i \right\}.
\]

Если \(\delta < \delta'\), тогда \(\omega(D, \delta, c) < \omega(D, \delta', c)\) для любого множества \(D_i\). Следовательно \(\omega(\delta, c) \leq \omega(\delta', c)\). Последовательность \(\omega(\delta, c)\) убывает, когда \(\delta \to 0\). Тогда существует предел \(\lim_{\delta \to 0^+} \omega(\delta, c)\). Покажем, что этот предел равен 0. Предположим противное, тогда существует \(\epsilon > 0\) такое, что \(\omega(\delta, c) \geq \epsilon; \forall \delta > 0\). Из доказанного выше следует, что для любого \(\epsilon > 0\) найдется \(\delta > 0\) такое, что если \(p^*, g^* \in E^1(X); \|p^*\|, \|g^*\| \leq c_{1_{B \times A}}\), \(\|p^* - g^*\| < \delta\), то \(\left| \Phi^* p^* - \Phi^* g^* \right| \leq \epsilon\). С другой стороны, если \(\omega(\delta, c) \geq \epsilon\) мы можем найти
такие λ-измеримые попарно дисъюнктивные множества $(D_i)_{i=1}^n$ что $\sum_{i=1}^n \omega(D_i, \delta, \epsilon) > \frac{\epsilon}{3}$.
Тогда существуют следующие элементы

$x_i, x'_i \in X, \|x_i\|, \|x'_i\| \in Q, \ z_0 \in Z; \ \|z_0\| \leq 1; \ \|x_i - x'_i\| < \frac{\delta}{n} \ \|x_i\|, \|x'_i\| < c; \ i = 1, \ldots, n.$

Теперь можем написать

$$\sum_{i=1}^n \int_{D_i} ((z_0, U(s, t, x_i)) - (z, U(s, t, x'_i)))d(\lambda)(s, t) \geq \frac{\epsilon}{3}$$

Рассмотрим множества

$$D_i^{-} := \{(s, t) \in D_i : (z, U(s, t, x_i)) - (z, U(s, t, x'_i)) < 0; \ D_i^{+} = D_i - D_i^{-}.$$

Положим

$$\bar{p}^* = \sum_{i=1}^n x_i 1_{D_i^{+}} + \sum_{i=1}^n x'_i 1_{D_i^{-}}; \quad \bar{g}^* = \sum_{i=1}^n x_i 1_{D_i^{-}} + \sum_{i=1}^n x'_i 1_{D_i^{+}}.$$

Тогда

$$\bar{p}^*, \ \bar{g}^* \in E^l(X); \ |\bar{p}^*|, |\bar{g}^*| \leq c1_{B_x A}.$$

Следовательно,

$$\|\bar{p}^* - \bar{g}^*\| < \delta; \quad \sum_{i=1}^n \left| \int_{D_i} ((z_0, U(s, t, x_i)) - (z, U(s, t, x'_i)))d\lambda(s, t) \right| = \int_{B_x A} \left| ((z_0, U(s, t, x_i)) - (z, U(s, t, x'_i)))d\lambda(s, t) \right| \leq \frac{\epsilon}{4}.$$

Получили противоречие.

Этап 4. Для каждого $\delta > 0$ и для каждого $\epsilon > 0$ определим множество

$$D(\delta, \epsilon, c) := \{(s, t) \in B \times A : \sup \{(z, U(s, t, x)) - (z, U(s, t, x'))\} \geq \epsilon; \ \|x\|, \|x'\| \in Q; \ \|x - x'\| < \delta; \ \|x\|, \|x'\| < c; \ z \in Z; \ \|z\| \leq 1.$$

Множество $D(\delta, \epsilon, c) \lambda$-измеримо. Покажем, что $\lim_{\delta \to 0^+} \lambda D(\delta, \epsilon, c) = 0$ для любого $\epsilon > 0$.
Пусть x, x' таковы, что $\|x\|, \|x'\| \in Q; \ \|x - x'\| < \delta; \ \|x\|, \|x'\| < c$. Определим множество

$$D(x, x', \epsilon) = \{(t, s) \in B \times A : \sup \{|(z, U(s, t, x)) - (z, U(s, t, x'))|; \ z \in Z; \ \|z\| \leq 1\} \geq \epsilon.$$

Тогда множество $\{(x, x') \in A \times A : \ \|x - x'\| \leq \delta; \ \|x\|, \|x'\| \leq c\}$ счетно. Рассмотрим последовательность $(x_i, x'_i)_{i=1}^\infty$, и определим дисъюнктную последовательность измеримых множеств

$$D_1(\epsilon) := D(x_1, x'_1, \epsilon); \quad D_{n+1}(\epsilon) := D(x_{n+1}, x'_{n+1}, \epsilon) \setminus \bigcup_{i=1}^n D(x_i, x'_i, \epsilon).$$
Тогда

$$\lambda D(\delta, c) = \sum_{i=1}^{\infty} \lambda D_i(\epsilon);$$

$$\lambda D_i(\epsilon) \leq \frac{1}{\epsilon} \int_{D_i} \sup\{|\langle z, U(s, t, x_i) \rangle - \langle z, U(s, t, x'_i) \rangle|; z \in Z; \|z\| \leq 1\} d\lambda(t, s) \leq$$

$$\leq \omega(D_i, \delta, c); \sum_{i=1}^{\infty} \lambda D_i(\epsilon) \leq \frac{1}{\epsilon} \sum_{i=1}^{\infty} \omega(D_i(\epsilon), \delta, c) \leq \frac{1}{\epsilon} \omega(\delta, c);$$

$$\lambda D(\delta, c) \leq \frac{1}{\epsilon} \omega(\delta, c).$$

Так как \(\lim_{\delta \to 0^+} \omega(\delta, c) = 0 \) то \(\lim_{\delta \to 0^+} \lambda D(\delta, c) = 0 \) для любого \(\epsilon > 0 \).

ЭТАП 5. Рассмотрим убывающую последовательность действительных чисел \((\delta_k)_{k=1}^{\infty} \), сходящуюся к нулю. Для любого \(\epsilon > 0 \) определим множество \(D(\epsilon, c) := \bigcap_{k=1}^{\infty} D(\delta_k, \epsilon, c) \). Тогда \(\lambda D(\epsilon, c) \leq \lambda D(\delta_k, \epsilon, c); \forall k \in N \). Получаем, что \(\lambda D(\epsilon, c) = 0; \forall \epsilon > 0 \). Рассмотрим другую убывающую последовательность положительных действительных чисел:

\[
(\epsilon_m)_{m=1}^{\infty} \lim_{m \to \infty} \epsilon_m = 0; D_c = \bigcup_{m=1}^{\infty} D(\epsilon_m, c); \lambda D_c = 0.
\]

Пусть \((s, t) \notin D_c \). Тогда можем написать

\[
\forall \epsilon > 0 \exists m \in N; 0 < \epsilon_m < \epsilon; \ (s, t) \notin D(\epsilon_m, c) = \bigcap_{k=1}^{\infty} D(\delta_k, \epsilon_m, c).
\]

Тогда существует \(k \in N, (s, t) \notin D(\delta_k, \epsilon_m, c). \) Это означает, что если \(x, x' \in \mathfrak{A}, \|x-x'\| < \delta; \|x\|, \|x'\| < c. \) Тогда

\[
\sup\{|\langle z, U(s, t, x) \rangle - \langle z, U(s, t, x') \rangle|; z \in Z; \|z\| \leq 1\} < \epsilon_m < \epsilon.
\]

Значит функция \(U(s, t, \cdot) Z \)-равномерно непрерывна на \(\mathfrak{A} \cap \overline{B}(c) \) когда \((s, t) \notin D_c \).

2.2. В этом пункте приведем критерий слабой интегральной представимости мажорируемого оператора Урысона.

Теорема. Пусть \(T \) мажорируемый оператор Урысона. Тогда следующие условия эквивалентны:

1) \(T \) — слабый интегральный оператор;

2) Для любых последовательностей \((f_n), (\bar{g}_n) \in E(X), \|f_n\|, \|\bar{g}_n\| \leq g, g \in E_+, \) справедлива импликация:

\[
\left\| \hat{f}_n - \bar{g}_n \right\| \xrightarrow{\mathfrak{C}_0} 0 \Rightarrow \left\| T\hat{f}_n - T\bar{g}_n \right\| \xrightarrow{\mathfrak{C}_0} 0.
\]

\(<1 \Rightarrow 2>\) Пусть \(T \) — слабый интегральный оператор с ядром \(U \). Рассмотрим ограниченные последовательности

\[
(\hat{f}_n), (\bar{g}_n) \in E(X); \left\| \hat{f}_n \right\|, \left\| \bar{g}_n \right\| \leq g, g \in E_+; \left\| \hat{f}_n - \bar{g}_n \right\| \xrightarrow{\mathfrak{C}_0} 0.
\]
Слабое интегральное представление мажорируемых операторов

Оператор T мажорируемый, поэтому, в силу 15. мажоранта $|T|$ будет интегральным оператором Урсына из E в F. Для любой вектор-функции $\tilde p$ такой, что $|\tilde p| \leq g$, справедливо неравенство

$$|\langle z, U(s, t, \tilde p(t)) \rangle| \leq |U|(s, t, g(t)) \lambda\text{-н.в.}$$

Введем следующие множества меры нуль

$$D := \{ s \in B : \text{функция } |U|(s, t, g(t)) \text{ не будет } \nu\text{-интегральной} \};$$

$$D' := \{ s \in B : \text{множество } [t \in A : \text{функция } \sup\{|\langle z, U(s, t, \tilde f(t) \rangle\}; z \in Z; \|z\| \leq 1\} \text{ не будет равномерно непрерывной на отрезке } [0, g(t)] \text{ имеет ненулевую меру } \nu \};$$

$$D_n := \{ s \in B : \text{множество } [t \in A : \sup\{|\langle z, U(s, t, \tilde f_n(t) \rangle\}; z \in Z; \|z\| \leq 1\} \geq |U|(s, t, g(t)), \text{ или } \sup\{|\langle z, U(s, t, \tilde g_n(t) \rangle\}; z \in Z; \|z\| \leq 1\} \geq |U|(s, t, g(t)) \text{ имеет ненулевую меру } \nu \}.$$

Необходимо показать, что если $s \notin D \cup D' \cup (\bigcup_{n=1}^{\infty} D_n)$, то справедлива формула

$$\lim_{n \to \infty} \int \sup_{A} |\langle z, U(s, t, \tilde f_n(t) \rangle - \langle z, U(s, t, \tilde g_n(t) \rangle|d\nu(t) = 0.$$

Зафиксируем $s \notin D \cup D' \cup (\bigcup_{n=1}^{\infty} D_n)$ и покажем, что

$$\sup\{|\langle z, U(s, \cdot, \tilde f_n(\cdot) \rangle - \langle z, U(s, \cdot, \tilde g_n(\cdot) \rangle|; z \in Z; \|z\| \leq 1\} \to 0(\nu).$$

Пусть $\epsilon > 0$. Определим множество

$$G^\epsilon_n := \{ t \in A : \sup\{|\langle z, U(s, t, \tilde f_n(t) \rangle - \langle z, U(s, t, \tilde g_n(t) \rangle| \geq \epsilon; z \in Z; \|z\| \leq 1\}.$$

Надо показать, что $\lim_{n \to \infty} \nu(G^\epsilon_n) = 0$. Определим множество

$$A_k := \{ t \in A : \|x\|, \|x'\| \leq g(t), \|x - x'\| < \frac{1}{k} \Rightarrow \sup\{|\langle z, U(s, t, \tilde f_n(t) \rangle - \langle z, U(s, t, \tilde g_n(t) \rangle| < \epsilon\}.$$

Легко видеть, что таким образом определена последовательность неубывающих множеств A_k и $A = \bigcup_{k=1}^{\infty} A_k$. Пусть

$$G^\epsilon_i := \{ t \in A : \text{функция } U(s, t, \cdot) \text{ не будет } Z\text{-слабо равномерно непрерывной на } \overline{B}(i); i \in Q \}.$$

Так как $s \in D'$, то G^ϵ_i — множество меры нуль. Тогда $G := \bigcup_{i=1}^{\infty} G^\epsilon_i$, где i пробегает множество рациональных чисел, также множество меры нуль. Для любого $\epsilon > 0$ возьмем $\delta > 0$, такое, что если $\|x\|, \|x'\| \leq g(t) \text{ и } \|x - x'\| < \delta$, то $\sup\{|\langle z, U(s, t, x) \rangle - \langle z, U(s, t, x') \rangle| < \epsilon$. Возьмем $k \in N$, такое что $\frac{1}{k} < \epsilon$. Тогда $t \in A_k$. В силу непрерывности меры ν для любого $\eta > 0$ найдется $k_0 \in N, \eta(A_{k_0}) > \eta(A) - \frac{\epsilon}{2}$. Пусть теперь для $n \in N$
$W_n := \{ t \in A : \left| \tilde{f}_n(t) - \tilde{g}_n(t) \right| \geq \frac{1}{k_n} \}$. Так как $\left| \tilde{f}_n - \tilde{g}_n \right| \to 0$, то $\lim_{n \to \infty} \nu(W_n) = 0$. Тогда найдется $n_0 \in \mathbb{N}$, такой что $\nu(W_n) < \frac{\epsilon}{2}$, $\forall n > n_0$. Если $t \in G_n^\alpha \cap A_{k_0}$ тогда $t \in W_n$. Далее имеем

$$\nu(G_n^\alpha) \leq \nu(A \setminus A_{k_0}) + \nu(W_n) < \eta, \forall n > n_0.$$

Теперь получаем $\lim_{n \to \infty} \nu(G_n^\alpha) = 0$ и

$$\sup \{ \langle z, U(s, \cdot, \tilde{f}_n(t)) \rangle - \langle z, U(s, \cdot, \tilde{g}_n(t)) \rangle \} \to 0(\nu).$$

С другой стороны $\left| \tilde{f}_n^\alpha \right|, \left| \tilde{g}_n^\alpha \right| \leq g$ и если $s \not\in D_n$, тогда

$$\sup \{ \langle z, U(s, t, \tilde{f}_n(t)) \rangle - \langle z, U(s, t, \tilde{g}_n(t)) \rangle \} \leq 2 ||U||(s, t, g(t)).$$

Примения теперь теорему Б. Лени можем написать

$$\lim_{n \to \infty} \int_A \sup \{ \langle z, U(s, t, \tilde{f}_n(t)) \rangle - \langle z, U(s, t, \tilde{g}_n(t)) \rangle \} d\nu(t) = 0.$$

Докажем теперь импликацию 2) \Rightarrow 1). Рассмотрим сужение T на $E^\prime(X)$ тогда $T|_{E^\prime(X)}$ слабый интегральный оператор и существует функция $U : B \times A \times \mathfrak{A} \to Y$, такая, что

1) $U(s, t, \cdot) = 0 \lambda$ почти всюду для $(s, t) \in B \times A$;
2) $U(\cdot, x, \lambda) - \nu$ н.в. Z-слабо измеримы для всех $x \in \mathfrak{A}$;
3) и если $\tilde{p} \in E^\prime(X)$, то функция $s \mapsto \int_A \langle z, U(s, t, \tilde{p}(t)) \rangle d\nu(t)$ μ-почти всюду конечна и справедливо равенство

$$\langle z, T\tilde{p}(s) \rangle = \int_A \langle z, U(s, t, \tilde{p}(t)) \rangle d\nu(t).$$

Функция $U(s, t, \cdot) Z$-слабо измерима на множестве $\mathfrak{A} \cap \overline{B}(c)$. Необходимо расширить $U(s, t, \cdot)$ до функции $U^\prime(s, t, \cdot)$, такой что $U^\prime : B \times A \times X \to R$ и которая бы совпадала с U на множестве $B \times A \times \mathfrak{A}$. Кроме условий 1–3 функция $U^\prime(s, t, \cdot)$ должна быть Z-слабо равномерно непрерывной на любом замкнутом ограниченном шаре в X для почти всех $(t, s) \in B \times A$. Рассмотрим последовательность, $(x_n) \in \mathfrak{A}$ сходящуюся по norme к x, тогда значение функции U^\prime в точке x определяется следующим образом: $U^\prime(s, t, x) := \lim_{n \to \infty} U(s, t, x_n)$. Выполнение условия 1) для функции U^\prime очевидно. Так как $U^\prime(\cdot, \cdot, x_n)$ λ-слабо измерима $\forall n \in \mathbb{N}$, то и $U^\prime(\cdot, \cdot, x) \lambda$-слабо измерима. Пусть $x_0 \in X$. Покажем равномерную непрерывность. Возьмем $\epsilon > 0$, так как U^\prime равномерно непрерывная на \mathfrak{A}, то существует $\delta > 0$ и для любых

$$q, q' \in \mathfrak{A}; \ z \in Z; \ ||z|| \leq 1; \ ||q - q'|| < \delta \Rightarrow ||\langle z, U^\prime(s, t, q') \rangle - \langle z, U^\prime(s, t, q) \rangle || < \epsilon.$$

Пусть теперь $x, y \in X$ и (x_n) и (y_n) последовательности элементов из \mathfrak{A}, сходящиеся к x и y соответственно. Тогда можем написать:

$$\|x_n - y_n\| \leq \|x_n - x\| + \|x - y\| + \|y_n - y\|;$$

$$\|\langle z, U^\prime(s, t, x) \rangle - \langle z, U^\prime(s, t, y) \rangle \| \leq \|\langle z, U^\prime(s, t, x_n) \rangle - \langle z, U^\prime(s, t, x) \rangle \| + \|\langle z, U^\prime(s, t, y_n) \rangle - \langle z, U^\prime(s, t, y) \rangle \|.$$
Слабое интегральное представление мажорируемых операторов

Для любых \(x, y \in X \), таких что \(\|x - y\| < \frac{4}{3} \), получаем: \(|\langle z, U(s, t, x) \rangle - \langle z, U(s, t, y) \rangle| < \epsilon \).

Пусть \(\bar{f} \in E(X) \). Тогда найдется последовательность ступенчатых функций \(\bar{p}_n \) таких, что

\[
(\bar{p}_n)_{n=1}^\infty \subset E\ell(X) \cap B_{E(X)}(\|\bar{f}\|): |\bar{f} - \bar{p}_n| \overset{\text{в} \text{ } n \rightarrow \infty}{\longrightarrow} 0.
\]

Тогда \(|T \bar{f} - T \bar{p}_n| \to 0 \). Здесь \(B_{E(X)}(\|\bar{f}\|) \) — это решеточный шар в \(E(X) \), то есть множество \(\{\bar{p} : |\bar{p}| \leq |\bar{f}|\} \). Ясно, что \(\langle z, U'(s, t, \bar{f}(t)) \rangle = \lim_{n \to \infty} \langle z, U'(s, t, \bar{p}_n(t)) \rangle \) для любых \(z \in Z \), \(\|z\| \leq 1 \) и почти всех \(s \in B \). Для любого \(\bar{p}_n \) интеграл \(\int_A \langle z, U'(s, t, \bar{p}_n(t)) \rangle d\nu(t) \) существует в силу канонического неравенства:

\[
\int_A \langle z, U'(s, t, \bar{p}_n(t)) \rangle d\nu(t) \leq |Tf| \cdot |\bar{f}|.
\]

Теперь можем записать

\[
\langle z, T \bar{f}(s) \rangle = \lim_{n \to \infty} \langle z, T \bar{p}_n \rangle (s) = \lim_{n \to \infty} \int_A \langle z, U'(s, t, \bar{p}_n(t)) \rangle d\nu(t) = \int_A \langle z, U'(s, t, \bar{f}(t)) \rangle d\nu(t).
\]

Получаем, что \(T \) это слабый интегральный оператор. Доказательство окончено. □

Литература