МОДУЛЯРНЫЕ ЛОКАЛЬНО ОГРАНИЧЕННЫЕ ПРОСТРАНСТВА ФЕНХЕЛЯ — ОРЛИЧА И КОНУСЫ В НИХ

В. Г. Фетисов, Н. П. Безуглова

Изучено поведение конуса неотрицательных функций в обобщенных пространствах Орлича, как известно, не являющихся в полной мере метрическими пространствами при соответствующем выборе определяющей фундаментальной функции. Рассматривается ряд основных свойств конусов в векторнозначных пространствах Фенхеля — Орлича.

В работе [1] было изучено поведение конуса неотрицательных функций в обобщенных пространствах Орлича, как известно, не являющихся в полной мере метрическими пространствами (при соответствующем выборе определяющей фундаментальной функции). Здесь мы рассматриваем ряд основных свойств конусов в векторнозначных пространствах Фенхеля — Орлича (см. [2], там же содержится и обширная библиография).

1. Основные определения и некоторые вспомогательные результаты

Допустим, что X — вещественное линейное нормированное пространство; обозначим $\mathbb{R}^+ = [0, \infty]$ (соответственно, $\overline{\mathbb{R}}^+ = [0, \infty]$). Всякая функция $\Phi : X \to \mathbb{R}^+$ называется функцией Орлича (в частности, если Φ — выпуклая, то функцией Юнга), если $\Phi(0) = 0$ и, если элемент $x \in X, x \neq \Theta$ (Θ — ноль пространства X), то $\lim_{\lambda \to \infty} \Phi(\lambda x) = \infty$, где $\lambda \in \mathbb{R}$.

Примерами функций Орлича могут служить скалярная φ-функция $\Phi_1(u) = |u|^p$ $(0 < p < \infty)$ (определяющая классическое пространство Лебега L_p), N-функция $\Phi_2(u) = e^{\|u\|} - 1$ и т. д.

Определение 1. Пусть $(\Omega, \Sigma, \mu) — измеримое пространство с σ-конечной сепарабельной неатомичной полной мерой μ, X — линейное нормированное пространство, Φ — функция Орлича на X. Пространством Фенхеля — Орлича $L^\Phi(\mu, X)$ называется множество всех таких классов эквивалентности измеримых функций $u : \Omega \to X$, что существует $\lambda > 0$ такое, что $\int\limits_\Omega \Phi(\lambda u)d\mu < +\infty$.

Можно заметить, что пространство Фенхеля — Орлича представляет собой линейное пространство.

© 2000 Фетисов В. Г., Безуглова Н. П.
Определение 2. Функционал \(\rho : X \to \mathbb{R}^+ \) называется модуляром [3], если выполняются условия:
(a) \(\rho(x) = 0 \Leftrightarrow (x = \Theta) \);
(b) \(\rho(-x) = \rho(x) \);
(c) \(\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \) \((x, y \in X; \alpha, \beta \geq 0; \alpha + \beta = 1) \).
Если условие (a) заменить условием
(d) \(\rho(\Theta) = 0 \),
то функционал \(\rho \) называется псевдомодуляром.

Пусть \(M \) — линейное пространство всех ограниченных \(\mu \)-измеримых функций \(u : \Omega \to X \). Функционал \(\Gamma_F : M \to \mathbb{R}^+ \) вида \(\Gamma_F = \int \Phi(u(s))d\mu \) есть пример интегрального модуля на \(M \), удовлетворяющего условием (a)–(c).

Определение 3. Пространство \(\mu \)-измеримых функций, определяемое интегральным модулем \(\Gamma_F \) формулой
\[
L^*F(\mu, X) = \{x \in L^F(\mu, X) : \lim_{\lambda \to 0} \Gamma_F(\lambda x) = 0\},
\]
называется модулярным пространством Фенхеля — Орлича.

По поводу модулярных пространств подробнее см. монографию [3].

Определение 4. Функционал \(\|\cdot; \Phi\| \), называется F-нормой, если он подчиняется условиям:
1. \(\|u; \Phi\| = 0 \Leftrightarrow u = \Theta \) (\(\Theta \) — ноль пространства);
2. \(\|u - v; \Phi\| = \|u; \Phi\| + \|v; \Phi\| \);
3. если \(\lambda_k \to \lambda \) и \(\|u_k - u; \Phi\| \to 0 \) при \(k \to \infty \), то \(\|\lambda_k u_k - \lambda u; \Phi\| \to 0 \), \(k \to \infty \).
Если \(\Phi \) — некоторая функция Орлича, \(\Gamma_F(u) \) — интегральный модуляр, определенный этой функцией, то с помощью формулы вида
\[
\|u; \Phi\| = \inf \left\{ \epsilon > 0 : \Gamma_F \left(\frac{u}{\epsilon} \right) \leq \epsilon \right\}
\]
можно на модулярном пространстве Фенхеля — Орлича задать F-норму, превращающую его в F-нормированное модулярное пространство Фенхеля — Орлича.

Определение 5. Говорят (см. [3]), что функция Орлича \(\Phi : X \to \mathbb{R}^+ \) подчиняется \(\Delta_2 \)-условию, если существуют постоянные \(k > 0 \) и \(\omega_0 \) такие, что
\(\Phi(2x) \leq k\Phi(x) \) при \(\|x; \Phi\| \geq \omega_0 \) и \(\sup \{\Phi(x) : \|x; \Phi\| = \omega\} < +\infty \).

Можно видеть, что, если функция Орлича \(\Phi \) удовлетворяет \(\Delta_2 \)-условию, то класс \(L^*F(\mu, X) \) совпадает с F-нормированным пространством Фенхеля — Орлича. Отметим, что, если \(\rho \) — модуляр в смысле \(X \). Накано [4], то
\[
\|u; \Phi\|_N = \inf \{\alpha > 0 : \rho(u/\alpha) \leq \alpha\}
\]
есть F-норма в пространстве X с константой $\lambda > 0$ в неравенстве треугольника (3), т. е. выполняется $\|u + \nu; \Phi\| \leq \lambda (\|u; \Phi\| + \|\nu; \Phi\|)$ для любых элементов $u, \nu \in X$.

Пусть X — вещественное банахово пространство. Как известно, множество $K \subset X$ называется конусом, если выполнены следующие условия (см. [5]):

(a) множество K замкнуто;

(b) из $w, \nu \in K$ вытекает, что $\alpha w + \beta \nu \in K$ при всех $\alpha, \beta \geq 0$;

(b) из каждой пары элементов $x, -x$ по крайней мере один не принадлежит K, если $x \neq \Theta$.

Всякий конус K является выпуклым множеством в X. Конус называется воспроизводящим, если каждый элемент $x \in X$ можно представить в виде $x = u - \nu$, где $u, \nu \in K$.

По аналогии с работой [1] будем называть положительный, не обязательно линейный функционал $\Gamma(u) (u \in X)$, обусловленный интегральным модуляром, строго растущим, если для любых $u_n \in K (n = 1, \infty)$, где K — конус неотрицательных функций $u_n(s) \geq 0$ из пространства X, из $\|u_n; \Phi\| \geq \epsilon > 0$ следует, что $\lim_{n \to \infty} \Gamma \left(\sum_{i=1}^{n} u_i \right) = \infty$.

Лемма 1. Интегральный модуляр $\Gamma_p(u) = \int_{\Omega} |u(s)|^p d\mu$ является строго растущим функционалом при каждом $0 < p < \infty$.

Доказательство леммы 1 можно посмотреть в работе [1].

Определение 6. Элемент $u \in L^*(\Phi, \mu)$ называется элементом с абсолютно непрерывной F-нормой, если $\lim_{\mu(D \to 0)} \|P_D u; D\| = 0$, P_D — оператор умножения на характеристическую функцию измеримого подмножества $D \subset \Omega$ (т. е. $P_D u = \chi_D u$, где $\chi_D(s) = 1$, если $s \in D \subset \Omega$ и, соответственно, $\chi_D(s) = 0$, если $s \in \Omega \setminus D$).

Лемма 2. Функция $u(s) \in L^*(\Phi, \mu)$ имеет абсолютно непрерывную F-норму тогда и только тогда, когда $u(s) \in E(\Phi, \mu)$, где $E(\Phi, \mu)$ означает замыкание в $L^*(\Phi, \mu)$ совокупности всех ограничённых на множестве Ω функций.

Лемма 3. Совокупность $L^*(\Phi, \mu)$ всех элементов из $L^*(\Phi, \mu)$ с абсолютно непрерывной F-нормой является сепарабельным замкнутым подпространством пространства $L^*(\Phi, \mu)$.

Лемма 4. Если определяющая функция Орлича $\Phi(u)$ подчиняется Δ_2-условию, то справедливо равенство $L^*(\Phi, \mu) = E(\Phi, \mu)$.

Отметим еще несколько утверждений, носящих прикладной характер в теории нелинейных операторов.
Лемма 5. Пусть $\mu(\Omega) < \infty$ и $\chi_\Omega \in L^*(\Phi, \mu)$. Тогда $L^*(\Phi, \mu)$ сепарабельно $\Leftrightarrow L^*(\Phi, \mu) = L^0_0(\Phi, \mu)$.

Наметим идею доказательства. Если предположить, что $L^*(\Phi, \mu) \neq L^0(\Phi, \mu)$, то можно указать элемент $x_0 \in L^*(\Phi, \mu) \setminus L^0(\Phi, \mu)$, где $x \geq 0$ почти всюду на μ-измеримом множестве Ω. По заданной функции $x_0(s)$ можно найти $\epsilon_0 > 0$ и последовательность измеримых подмножеств $\{\Omega_i\}_{i \in N} \subseteq \Omega$ такие, что $\Omega_i \cap \Omega_j = \emptyset$ и $\|\chi_{\Omega_i} x_0; \Phi\| \geq \epsilon_0$ (в силу условия $x_0 \notin L^0(\Phi, \mu)$). Обозначим через $w_J = \sum_{k \in J} x_{\Omega_k}$, где $J \in \mathbb{N}$. Если наборы $J_1 \neq J_2$, где $J_1, J_2 \subseteq \mathbb{N}$, тогда $\|w_{J_1} - w_{J_2}\| \geq \epsilon_0$. А так как $\{J : J \subseteq \mathbb{N}\}$ — несчетное множество наборов, то пространство $L^*(\Phi, \mu)$, очевидным образом, является несепарабельным модулярным пространством Фехнеля — Орлица.

Обратный факт: Предполагая теперь, что $L^*(\Phi, \mu)$ сепарабельное модулярное пространство Фехнеля — Орлица и $\chi_\Omega \in L^0(\Phi, \mu)$, возьмем некоторую функцию $u(s) \geq 0$, $u(s) \in E(\Omega)$. Апроксимируя ее последовательно не-прерывными функциями $(x_n)_{n \in \mathbb{N}}$ и, используя теорему Егорова, можно с помощью аппроксимации рассмотреть произвольную функцию $x(s) \in L^*(\Phi, \mu)$ и убедиться, что $x(s) \in L^0(\Phi, \mu)$. ▷

Банаховых пространства Фехнеля — Орлица достаточно полно исследованы в докторской диссертации Тюррета [2]. Что же касается модулярных пространств Фехнеля — Орлица $L^*(\Phi, \mu)$, определяемых вогнутыми функциями Орлица, то к настоящему времени мало что известно в этом направлении. Используя идеи работ [7] и [8], можно рассмотреть локально ограниченные модулярные пространства Фехнеля — Орлица (т. е. пространства, которые обладают ограниченной окрестностью нуля Θ). Ясно, что такое пространство имеет базис окрестностей Θ, состоящий из ограниченных множеств. В частности, лебеговы пространства L_p ($0 < p < \infty$) локально ограниченные.

Лемма 6. Если $\mu(\Omega) < \infty$ и существует $p > 0$ такое, что

$$\lim_{u \to +\infty, w \to +\infty} \frac{\Phi(uw)}{u^p \cdot \Phi(w)} > 0,$$

то модулярное пространство Фехнеля — Орлица $L^*(\Phi, \mu)$ будет локально ограниченным.

Пусть выполнено условие (4) (без ограничения общности можно считать, что существует $p > 0$ такое, что $\lim_{u \to +\infty, w \to +\infty} \frac{\Phi(uw)}{u^p \cdot \Phi(w)} = \infty$. Тогда существует $l > 1$ такое, что

$$\Phi(uw) > u^p \Phi(w)$$
при \(uw > w > t_0 \). Зададим функцию \(\Psi \) следующим образом:

\[
\Psi(t) = \begin{cases}
\Phi(t_0) \cdot \left(\frac{1}{t_0} \right)^p, & \text{если } t \in [0, t_0], \\
\Phi(t_0^{n+1}) \cdot \left(\frac{t}{t_0^{n+1}} \right)^p, & \text{если } t \in [t_0^n, t_0^{n+1}] (n \in \mathbb{N}).
\end{cases}
\]

Можно заметить, что \(\Psi(t) \) есть функция Орлича, непрерывная при \(t > 0 \). Учитывая условие (5), при \(t_0^n < t \) получим \(\Psi(t) > \Psi(t_0^n) \). Кроме того, функция \(\Psi(t) \) подчиняется условию

\[
\Psi(u \cdot w) > y^p \cdot \Psi(w)
\]

при \(uw > w > 0 \). Действительно, пусть \(t_0^n < w \leq t_0^{n+1}, t_0^s < uw \leq t_0^{s+1} \), где \(s = n + r \geq n \). Тогда

\[
\Psi(uw) > \Phi(t_0^{n+1}) \cdot t_0^p \cdot \left(\frac{uw}{t_0^{n+1}} \right)^p = u^p \cdot \Phi(t_0^{n+1}) \cdot \left(\frac{w}{t_0^{n+1}} \right)^p = u^p \cdot \Psi(w).
\]

Аналогично, \(\Phi/\Psi(i) < t_0^n \) и \(\Phi/\Psi(t_0) < 1 \), а это означает, что пространства \(L^*(\Phi, \mu) \) и \(L^*(\Psi, \mu) \) топологически эквивалентны. Но пространство \(L^*(\Phi, \mu) \) является локально ограниченным. Значит, и \(L^*(\Phi, \mu) \) — локально ограниченное пространство.

Можно заметить, что \(\{ V_r = r \cdot B^r(r) \}_{r>0} \) образует базу окрестностей нуля \(\Theta \) в модулярном пространстве \(L^*(\Psi, \mu) \). Доказательство этого факта аналогично доказательству теоремы 3 из работы [7], и мы его не приводим. \(\triangleright \)

Лемма 7. Если \(\mu(\Omega) < \infty \) и для всех \(p > 0 \) выполняется условие

\[
\lim_{u \to +\infty} \sup_{w \to +\infty} \frac{\Phi(uw)}{\Phi(w)} = 0,
\]

то модулярное пространство Фенхеля — Орлича \(L^*(\Phi, \mu) \) не является локально ограниченным.

\(\triangleright \) Доказательство леммы 7 аналогично доказательству теоремы 7 из работы [7], поэтому мы его не приводим. \(\triangleright \)

Лемма 8. Пусть \(L^*(\Phi, \mu) \) — модулярное пространство Фенхеля — Орлича и \(0 < \alpha \leq 1 \). Тогда для каждого элемента \(u_0 \in L^*(\Phi, \mu) \), минорированного почти всюду на \(\Omega \) и для каждого подмножества \(C \subset L^*(\Phi, \mu) \), удовлетворяющего соотношению

\[
\lim_{h \to +\infty} \sup_{x \in C} \| P_{D_{u_0}}(x, h); \Phi \| = 0,
\]

существует возрастающая функция \(\varphi : \mathbb{R}^+ \to \mathbb{R}^+ \) такая, что

\[
\lim_{u \to +\infty} \frac{\varphi(u)}{u^\alpha} = +\infty, \quad \sup_{x \in C} \| \varphi \left[\frac{x(s)}{u_0(s)} \right] u_0^\alpha(s); \Phi \| < +\infty.
\]
Так как \(\lim_{\lambda \to \infty} \sup_{x \in C} \| P_{D_0}(x, \lambda) x; \Phi \| = 0 \) (вытекает из условия (7)), то существует функция \(\psi(\lambda) \) такая, что

\[
\| P_{D_0}(x, \lambda) x; \Phi \| \leq \psi(\lambda), \quad \forall x \in C, \text{ где } \lim_{\lambda \to \infty} \psi(\lambda) = 0.
\]

Если \(\psi(\lambda) \to 0 \) при \(\lambda \to \infty \), то существует последовательность \((\lambda_n)_{n \in \mathbb{N}}, \lambda_n \uparrow \lambda_0 = 0 \) такая, что \(\sum_{n=0}^{\infty} \psi(\lambda_n) < +\infty \), и также можно утверждать, что существует некоторая возрастающая функция \(\delta: \mathbb{R}^+ \to \mathbb{R}^+ \), \(\delta(\lambda) \to \infty \) при \(\lambda \to \infty \), \(\delta(\lambda_n) = M_n \in \mathbb{N}, \forall n \in \mathbb{N} \) такая, что \(\sum_{n=1}^{\infty} M_n \psi(\lambda_{n-1}) < \infty \).

Обозначим \(D_n(x) = \{ s \in \Omega : \lambda_{n-1} u_0(s) < x(s) < \lambda_n u_0(s) \} \). Пусть \(\varphi(\lambda) = \delta(\lambda) \cdot \lambda^\alpha \). Ясно, что функция \(\varphi(\lambda) \) возрастает. Кроме того,

\[
\left\| \varphi \left[\frac{|x(s)|}{u_0(s)} \right] u_0^\alpha(s); \Phi \right\| \leq \sum_{n=1}^{\infty} \left\| P_{D_n(x)} \varphi \left[\frac{|x(s)|}{u_0(s)} \right] u_0^\alpha(s); \Phi \right\|.
\]

Так как \(\lambda_n \uparrow \) и \(u_0(s) \) минорирована положительным числом, то существует \(N_0 \in \mathbb{N} \) такое, что при \(n \geq N_0 \) выполнено \(|x(s)| > \lambda_{n-1} u_0(s) \geq 1 \) почти везде на множестве \(D_n(x) \).

Отсюда можно получить оценку:

\[
\sum_{n \geq N_0} \left\| P_{D_n(x)} \varphi \left[\frac{|x(s)|}{u_0(s)} \right] u_0^\alpha(s); \Phi \right\| = \sum_{n \geq N_0} \left\| P_{D_n(x)} \delta \left[\frac{|x(s)|}{u_0(s)} \right] |x(s)|^\alpha; \Phi \right\|
\leq \sum_{n \geq N_0} \left\| P_{D_n(x)} \delta(\lambda_n) u_0^\alpha(s); \Phi \right\| \leq \sum_{n \geq N_0} \left\| P_{D_n(x)} M_n |x(s)|; \Phi \right\|
\leq \sum_{n \geq N_0} M_n \left\| P_{D_{u_0}(x, \lambda_n-1)} x(s); \Phi \right\| \leq \sum_{n \geq N_0} M_n \cdot \psi(\lambda_{n-1}) \leq C_1,
\]

где \(C_1 \) — некоторая постоянная. Аналогично оценивается часть ряда для \(n < N_0 \):

\[
\sum_{n < N_0} \left\| P_{D_n(x)} \varphi \left[\frac{|x(s)|}{u_0(s)} \right] u_0^\alpha(s); \Phi \right\| \leq \sum_{n < N_0} \left\| P_{D_n(x)} \varphi(\lambda_{N_0}) u_0^\alpha(s); \Phi \right\|
\leq \sum_{1 \leq n < N_0} \left\| P_{D_n(x)} M_{N_0} \lambda_N (\lambda \Omega + u_0)(s); \Phi \right\|
\leq N_0 \cdot M_{N_0} \cdot E[\lambda_{N_0} + 1] \cdot \left[\| \lambda \Omega; \Phi \| + \| u_0; \Phi \| \right] \leq C_2,
\]

где \(C_2 \) — некоторая постоянная. \(\triangleright \)
2. Структурные свойства конусов
в модулярных пространствах Фенхеля — Оричча

Сначала мы рассмотрим вопрос о том, какие дополнительные условия гарантировают существование предела у монотонной последовательности \((x_n)_{n \in \mathbb{N}}\) элементов модулярного пространства Фенхеля — Оричча, полуупорядоченного конусом \(K\) положительных элементов. Без ограничения общности можно рассмотреть случай неубывающей последовательности \(x_1 \leq x_2 \leq \ldots \leq x_n \leq \ldots\) Последовательность \((x_n)_{n \in \mathbb{N}}\) называется ограниченной, если существует элемент \(y\) такой, что \(x_n \leq y\) (\(\forall n \in \mathbb{N}\)).

Существуют пространства, в которых из монотонности и ограниченности \((x_n)_{n \in \mathbb{N}}\) вытекает сходимость по \(F\)-норме. Например, если пространство \(X = L_p\) упорядочено при помощи конуса неотрицательных функций, то для каждой неубывающей ограниченной последовательности \((x_n)_{n \in \mathbb{N}}\) функция
\[x^*(s) = \sup_{n \in \mathbb{N}} x_n(s) \quad (s \in \Omega)\] также принадлежит \(L_p\).

Пространство, в котором каждая ограниченная монотонная последовательность имеет предел, будем называть в дальнейшем правильно упорядоченным. Соответственно, конус \(K\), который порождает правильную упорядоченность в пространстве, будем называть правильным. Последовательность \((x_n)_{n \in \mathbb{N}}\) ограничена по \(F\)-норме, если \(\|x_n; \Phi\| \leq M\), где \(M \in \mathbb{R}\). Наконец, конус \(K\) назовем вполне правильным, если каждая монотонная ограниченная по \(F\)-норме последовательность \((x_n)_{n \in \mathbb{N}}\) сходится по \(F\)-норме к некоторому пределу.

Теорема 9. Пусть на конусе \(K\) неотрицательных функций из модулярного пространства Фенхеля — Оричча \(L^*(\Phi, \mu)\) определён строго растущий и ограниченный на каждом шаре в пространстве \(L^*(\Phi, \mu)\) функционал \(\Gamma(u)\), тогда конус \(K\) обладает свойством вполне правильности.

Предположим противное. Тогда найдётся такая расходящаяся по \(F\)-норме (2) последовательность элементов \((w_n)_{n \in \mathbb{N}}\) в \(K\) такая, что

\[w_1 \leq w_2 \leq \ldots \leq w_n \leq \ldots\] (9)

Будем считать для определённости, что \(\|w_i; \Phi\| \geq \epsilon_0\) и \(\|w_{i+1} - w_i; \Phi\| \geq \epsilon_0 > 0\) \((i = 1, \infty)\), так как в противном случае всегда можно перейти к подпоследовательности \((w_{n_k})\) в \(L^*(\Phi, \mu)\), обладающей указанным свойством. Тогда

\[\lim_{n \to \infty} \Gamma(w_n) = \lim_{n \to \infty} \Gamma\left[w_1 + \sum_{i=1}^{n-1} (w_{i+1} - w_i)\right] = \infty,\] а это уже противоречит ограниченности функционала \(\Gamma(u)\) на шаре \(\|u; \Phi\| \leq M\). Отсюда вытекает, что последовательность \((w_n)_{n \in \mathbb{N}}\) в \(K\) сходится по \(F\)-норме (2) и, значит, конус \(K\) обладает свойством вполне правильности. ▲
Следствие 10. Конус K неотрицательных функций из p-однородного модульного пространства $L_p(\Omega)$ ($0 < p < \infty$) обладает свойством вполне правильности.

Теорема 11. Пусть на конусе K неотрицательных функций из модульного пространства Фехеля — Орлича $L^*(\Phi, \mu)$ определен монотонный строго растущий функционал. Тогда конус K обладает свойством правильности.

< Доказательство аналогично доказательству теоремы 9, предоставляем провести его читателю. >

Литература

1. Фетисов В. Г. К теории конусов в обобщенных пространствах Орлича // Дифференциальные и интегральные уравнения.—Орджоникидзе: Изд-во СОГУ, 1978.—С. 78–86.
5. Красносельский М. А. Положительные решения операторных уравнений.—М. 1962.—394 с.
6. Фетисов В. Г. Некоторые вопросы теории операторов в пространствах Орлича.—ЛГПИ, Дисс. на соиск. уч. степ. канд. физ.-мат. наук, 1968.—109 с.

г. Ростов

Статья поступила 26 ноября 2000 г.