ONE PROPERTY OF THE WEAK COVERAGE OF OPERATORS ITERATIONS IN VON NEUMANN ALGEBRAS

A. A. Katz

Conditions are given for *-weak convergence of iterations for an ultraweak continuous functional in von Neumann algebra to imply norm convergence.

Let M be a von Neumann algebra [5], acting on a separable Hilbert space H. Let T be a contraction from M_+ to M_*, so that $TM_+ \subseteq M_+$. On the pre-conjugate to M space M_* there are two topologies selected: the weak, or the $\sigma(M_*, M)$ topology, and the strong topology of the convergence in the norm of the space M_*.

Let now $T = \alpha$, where α be an automorphism of the algebra M. We will say that T in M_* is mixing, if for all $x \in M_*$ and $A \in M$, the following condition is valid:

$$\lim_{n \to \infty} \langle T^n x, A \rangle = 0,$$

where

$$M_*^0 = \{ y \in M_* : y(1) = 0 \}.$$

We will say that a positive contraction T in M_* is completely mixing, if for all $x \in M_*^0$ the following condition is valid:

$$\lim_{n \to \infty} \| T^n x \| = 0.$$

The following theorem is valid:

Theorem. Let T be a pre-conjugate operator to an automorphism α of a von Neumann algebra M for which there is no invariant normal state. Then, for $x \in M_*$, the weak convergence of $T^n x$ implies the strong convergence of $T^n x$. In particular, if T is mixing, then T is completely mixing.

< Let us denote by $|T^n x|$ the sum

$$(T^n x)_+ + (T^n x)_-,$$

where $T^n x = (T^n x)_+ - (T^n x)_-$

is the Hahn decomposition of the functional $T^n x$ [4]. The sequence $\{ |T^n x| \}_{n=1}^\infty$ is $\sigma(M_*, M)$ pre-compact [4] and, therefore, the convex envelope of the set $\{ |T^n x| \}_{n=1}^\infty$ is pre-compact as well. The sequence $\{ A^n |x| \}_{n=1}^\infty$ is also pre-compact because it belongs to the convex envelope of the set $\{ |T^n x| \}_{n=1}^\infty$.

Because T is pre-conjugate to an automorphism, then $|T^n x| = T^n |x|$. In fact, the support of $T(T^n x)_+$ is orthogonal to the support of $T(T^n x)_-$. $T(T^n x)_+ - T(T^n x)_- = T(T^n x) = T^{n+1} x$, and from the uniqueness of the Hahn decomposition [4] it follows that $|T^n x| = T^n |x|$.

© 2003 Katz A. A.
Let π be $\sigma(M_e, M)$-limit point of the set $\{A^n \|x\|\}_{n=1}^{\infty}$. Then the functional π will be T-invariant. In fact,

$$T\pi = \lim_{n \to \infty} \sum_{k=1}^{n} \left< T^k x, y \right>$$

$$= \lim_{n \to \infty} \left[n^{-1} \cdot \sum_{k=0}^{n-1} \left< T^k x, y \right> - n^{-1} \cdot \left< x, y \right> + n^{-1} \cdot \left< T^n x, y \right> \right] = \pi.$$

It is easy to see that $\pi \geq 0$ and, therefore, from the conditions of the theorem it follows that $\pi = 0$. Now we know that the only weakly limit point of the set $\{A^n \|x\|\}_{n=1}^{\infty}$ is the point $\pi = 0$. Therefore

$$0 = \lim_{n \to \infty} \|A^n \|x\|\| = \lim_{n \to \infty} (A^n \|x\|)(1) = \lim_{n \to \infty} (T^n \|x\|)(1) = \lim_{n \to \infty} ||T^n \|x\||,$$

because $(T^n \|x\|)(1) = (T^m \|x\|)(1)$ for all $n, m \in \mathbb{N}$. The theorem is proven. \triangleright

References

Старт новой главы 11 апреля, 2003

A LEXANDER A. K ATZ, Ph. D.
Department of Mathematics & CS, St. John’s University, 300 Howard Ave.,
Staten Island, NY 10301, USA.
E-mail: katza@stjohns.edu