Smoking and Social Interaction

Panu Poutvaara† Lars-H. R. Siemers‡

April 4, 2007

Abstract

We study the social interaction of non-smokers and smokers as a sequential game, incorporating insights from social psychology and experimental economics into an economic model. Social norms affect human behavior such that non-smokers do not ask smokers to stop smoking and stay with them, even though disutility from smoking exceeds utility from social interaction. Overall, smoking is unduly often accepted when accommodating smoking is the social norm. The introduction of smoking and non-smoking areas does not overcome this specific inefficiency. We conclude that smoking bans may represent a required (second-best) policy.

Keywords: smoking policy, health, social norms, guilt aversion, social interaction

JEL-codes: I18; H31; D11

*We thank Johannes Binswanger, Essi Eerola, Wolfgang Gick, Volker Hahn, Rainer Kambeck, Topi Miettinen, Felix Mühe, Joel Stiebale, Harald Tauchmann, Nicolaj Verdelin, and participants at the annual meetings of the European Public Choice Society (EPCS) in Turku, of the Verein für Socialpolitik in Bayreuth, of the Public Choice Society (PCS) in New Orleans, and of the Scottish Economic Society (SES) in Perth, and at an RWI Essen-seminar for very helpful comments on an earlier draft of the paper.

†Department of Economics, University of Helsinki, Arkadiankatu 7, 00014 Helsinki, Finland. E-mail: panu.poutvaara@helsinki.fi

‡RWI Essen, Hohenzollernstraße 1-3, 45 128 Essen, Germany. E-mail: siemers@rwi-essen.de
1 Introduction

Active smoking causes health problems and often advanced death.\(^1\) Second-hand smoking is less but still significantly dangerous.\(^2\) Hence, active smokers exert a dangerous, negative externality on non-smokers whenever they smoke and socially interact with non-smokers. Correspondingly, tobacco and smoking policies have become stricter in recent years in several countries in Europe and in parts of the U.S.A.\(^3\) The major aim of these regulations is to prevent involuntary passive smoking.

Passive smoking typically occurs in situations in which smokers and non-smokers socially interact, for instance at work, in pubs or in restaurants. We often observe the behavior that non-smokers hesitate to complain and agonize smoking, although they—including the potential utility gain from being together—would prefer not being trapped in interaction with smokers who smoke in their presence. This may appear paradoxical. However, it is fully in line with the revealed preferences once taking into account social norms. We analyze the social interaction between smokers and non-smokers as a sequential game. Beside the utility of smoking and the disutility of second-hand smoke, individuals care about behaving in line with social norms. Our model explains the observed behavior of hesitating to complain by a weak level of strategic bargaining power, determined by social norms. Social norms cause that non-smokers and smokers are often trapped in social interaction so that smoking is unduly often accepted—inefficiency arises. Therefore, in our scenario, a social norm is harmful to welfare. We show that the introduction of non-smoking areas is not sufficient to cope with this specific inefficiency. Strict smoking bans are only a second-best policy, but appear to be required in areas where smokers and non-smokers socially interact. Therefore, our findings provide support for the strict smoking

\(^1\)Smoking is a documented risk factor, e.g. for cancer. The risk is increased when alcohol is consumed additionally (Chowdhury and Rayford, 2001; DFKZ, 2005a; Li, 2001; Partanen et al., 1997; Schuller et al., 2002; Silverman et al., 1995).

\(^2\)IARC (2004), or Gruber (2001: 203-204). Smoking-related illness was identified to be the leading preventable cause of death in the United States (McGinnis and Foege, 1993: 14).

\(^3\)The World Health Organization (WHO) even follows a policy on non-recruitment of smokers (http://www.who.int/employment/recruitment/en/index.html).
policies followed by several countries in recent years.

Theoretical research on smoking so far has focussed on addictive behavior (Spinnewyn, 1981; Becker and Murphy, 1988; Chaloupka, 1991; Orphanides and Zervos, 1995, 1998; Becker and Mulligan, 1997; O’Donoghue and Rabin, 1999; Suranovic et al., 1999; Laux, 2000; Gruber and Köszegi, 2001, 2004). Gruber (2001) provides an excellent review of the theoretical work and the evidence on tobacco regulation. The behavior of smokers is, among other things, influenced by social and psychological aspects. For instance, advices of members of the smoker’s family influence the smoking behavior (Hammar and Carlsson, 2005), and the presence of other smokers in a household influences a smoker’s decision to quit (Jones, 1994). Moreover, smoking regulations can help smokers as a self-control device (Gruber and Mullainathan, 2002). In Bernheim and Rangel (2004), human behavior can be triggered by environmental cues that can set individuals in a “preference mode”, in which an addictive substance is always consumed, irrespective of underlying preferences.

Our paper is also related to the research on social conformity and customs (Akerlof, 1980; Bernheim, 1994). Similar to these models, we extend the standard model, in which utility is derived directly from consumption, to indirect social determinants. In contrast to Bernheim, in whose model individuals additionally care about status, we include the will to behave in line with social norms and customs, which is related to Akerlof’s idea of a code of behavior. Moreover, our paper is related to the article of Charness and Dufwenberg (2006) on “guilt aversion,” in which individuals suffer utility losses when they do not meet the expectations of other individuals. Related to Charness and Dufwenberg, Miettinen (2006) suggests an approach where agents feel bad about breaching social norms. While Charness and Dufwenberg (2006) and Miettinen (2006) identify cases in which social norms allow reaching a superior outcome, we highlight that social norms of politeness may also result in inefficiency and call for policy intervention in form of smoking bans. An interesting discussion of social norms is provided by Elster (1989).
2 Insights from social psychology

In social psychology, a major research field investigates the impact of social norms on the behavior of individuals (e.g. Aronson et al., 2004; Zimbardo and Gerrig, 1999). Social influence arises from confrontation with opinions or evaluations of the majority of society or of the own group, which constitute social norms (van Avermaet, 2002: 412). Social psychologists distinguish two channels via which social impacts may work: (a) normative aspects that cause adopting norms of other people for being respected, and (b) informative aspects that are followed to behave “correctly” (Zimbardo and Gerrig, 1999: 412). In many different experiments it has been proved that individuals as members of a social group often show a behavior of conformity (Erb and Bohner, 2002). Individuals expect negative evaluations when they do not behave conformable to social norms, and that deviance is sanctioned (Levine, 1989). A missing consensus generates uncertainty, and thus causes subjective costs (Turner, 1991). Hence, there exists a subjective strategy to reduce interpersonal conflict (Moscovici, 1985) and the will not to behave deviantly in order to maintain social stability. But the wish to be accepted by majority may often only cause public conformity with social norms (“compliance”), without a change of private attitude (“conversion”). Therefore, we observe the change in behavior only in social interaction (Erb and Bohner, 2002). An instance is the individual decision to wait in line. If there is already a line where other people wait, most people will probably also line up, even though they might not do so if there would be only two or three other persons that are waiting.

The idea that departures from social norms impair the individual reputation or status or entail other forms of social punishment is also a central building block in Akerlof (1980), Bernheim (1994), Charness and Dufwenberg (2006), and Miettinen (2006). We believe that such social and psychological aspects are also crucial for the behavior of smokers and non-smokers when they socially interact. We argue that individual behavior is influenced by whether an action is in line with social norms and conventions or not. This extension generates an adjustment in the distribution of bargaining power, so that people may actually behave in their own best interest when hesitating in asking for stopping smoking,
though seemingly suffering a net utility loss.

To our knowledge, no author so far has addressed and explained the behavior of non-smokers in the social interaction with smokers. In the literature on smoking and in the smoking debate, the role of social interaction and the consequences of social norms have been neglected. We shed some light on this health related behavioral issue, and deduce corresponding policy implications.

3 Model

For simplicity, we consider the social interaction of one smoker, player S, and one non-smoker, player N; the players are indexed by $i = \{S, N\}$. The smoker obtains utility of $B > 0$ by smoking; potential utility losses in the case of addiction when she/he does not smoke represent saved opportunity costs and increase B. That is, variable B is the net benefit from smoking. The smoker’s utility when she/he is alone and does not smoke is normalized to zero. The non-smoker, in turn, suffers a utility loss of size $E > 0$ by second-hand smoking; utility loss E (external effect) also involves the subjective perception of the danger of second-hand smoking. Moreover, both players might enjoy being together and receive utility of size $T_i > 0$, $i = \{S, N\}$, from this social interaction.

So far, our model is standard. We now additionally assume that within society, or in the narrow environment of social interaction, there exists a social norm or standard behavior that determines whether or not smoking is generally accepted: We hypothesize that if accommodating smoking is the social norm, then social interaction happens at a location where smoking is accepted in general, and the non-smoker has to ask the smoker not to smoke. Hence, our model has to take into account the findings of the theories on social impacts and guilt aversion: If accommodating smoking is the norm, we assume that the non-smoker will suffer a utility loss of size $A_N > 0$ from asking for not smoking; because asking for not smoking is uncommon, it potentially starts a conflict, and it may be considered as a deviant behavior that may cause a feeling of guilt. Similarly, if accommodating smoking is not standard, the smoker will have to ask for permission to
smoke, which costs her/him utility of size $A_S > 0$.

3.1 When accommodating smoking is the social norm

Suppose the two players sit in a pub or restaurant, or the like. If accommodating smoking is the norm the smoker will not ask for permission to smoke and smokes whenever she/he wants to.\(^4\) Therefore, the two play the following sequential game:

Game 1:

Stage 1 The smoker decides to stay and smoke, to stay and not to smoke, or to leave. If the smoker does not smoke both stay in the room together, if the smoker goes she/he smokes alone. In both cases the game ends.

Stage 2 If the smoker chooses to stay and smoke, the non-smoker decides whether she/he goes away, asks the smoker to stop smoking, or accepts smoking. If she/he accepts smoking, the game ends and both stay together; if the non-smoker directly goes away, the game ends as well.

Stage 3 If the non-smoker asks for stopping smoking, the smoker decides to stay and stop smoking, to stay and continue smoking, or to leave. If the smoker stops smoking, both stay together. If the smoker goes away she/he smokes alone. In both cases the game ends.

Stage 4 If the smoker continues smoking, the non-smoker decides whether to accept smoking or to go. If the non-smoker accepts they will stay together, otherwise she/he has to leave. The game ends.

The game is illustrated by the game tree in Figure 1; one can also find the payoffs P_j, $j = \{1, 2, \ldots, 8\}$, there. Notice that the possibility of going away at every stage represents an exit option. We assume that there also exists a social norm that determines that going away is considered as a rude step. Breaking it generates a (strong) feeling of guilt and therefore involves, for the one leaving, a loss of utility of L_i. In the following we assume

\(^4\)The same holds if it is a social norm of politeness that non-smokers do not object if a smoker asks for a permission to smoke.
$L_i > A_i$, for $i = \{S, N\}$. Whenever the smoker chooses not to smoke, the non-smoker chooses to accept smoking, or one of the players goes, the game ends. We assume that both players exactly observe the actions of the other player (perfect information). We also assume that both players know each other’s type and payoff function (complete information), for simplicity.\footnote{Allowing for uncertainty would only have the consequence that we have to deal with expected payoffs, and not provide any additional insight.} The social interaction between the players during the game does not take so much time that we would have to discount the payoffs correspondingly. Moreover, for simplicity, we introduce the following tie-breaking rule: if a player is indifferent between two actions, the player chooses that action that results in being together, that is, for instance, the smoker is then willing not to smoke. We solve the game by backwards-induction and obtain:

Proposition 1. Depending on parameter constellation, Game 1 possesses the following subgame-perfect Nash equilibria:

(a) If $T_N \geq E - L_N$, the unique subgame-perfect Nash equilibrium is described by the sequence of actions\footnote{The first entry is the equilibrium choice of the smoker at stage 1, the second the of the non-smoker at stage 2, the third would be the optimal choice of the smoker at stage 3, and so on: (stage 1, stage 2, stage 3, ...).} (smoke, accept) and payoff\footnote{The first term in parentheses represents the payoff of the smoker and the second the payoff of the non-smoker.} $P_4 = (B + T_S, T_N - E)$.

(b) If $T_N < E - L_N$ and

(i) $B > T_S$, the unique subgame-perfect Nash equilibrium is described by the sequence of actions (smoke, go) and payoff $P_3 = (B, -L_N)$.

(ii) $B \leq T_S$, there exist two subgame-perfect Nash equilibria. One equilibrium is described by the sequence of actions (smoke, ask, stop smoking) and payoff $P_6 = (T_S, T_N - A_N)$, another by (do not smoke) and $P_2 = (T_S, T_N)$.

Proof: See appendix.

In case (a), the non-smoker’s preferences are such that she/he prefers being together...
suffering second-hand smoke to leaving and being without the smoker: if the non-smoker values the smoker’s company plus the costs of being “impolite” by leaving higher than the danger of second-hand smoking, E, the outcome will always be that the smoker smokes and the non-smoker accepts this. The smoker knows that the non-smoker’s threat of leaving would not be credible, and hence the smoker will not stop smoking if asked for, which the non-smoker knows, in turn: there is no point in asking the smoker to stop smoking. Thus $T_N + L_N \geq E$ is a necessary and sufficient condition for smoking being accepted.

However, in the contrary case, the non-smoker’s threat of leaving is credible. Now the smoker must consider whether she/he prefers being together with the non-smoker renouncing smoking (case (b)(ii)) or smoking alone (case (b)(i)). If the smoker prefers the latter alternative ($B > T_S$) she/he will smoke at stage 1 knowing that the non-smoker will immediately go. The smoker will not go at stage 1, because then she/he would behave impolitely, and the non-smoker will not ask the smoker to stop smoking because she/he knows that she/he will have to leave, anyway. If the smoker prefers being together with the non-smoker, it is clear that knowing that the non-smoker might leave, the smoker decides not to smoke. However, because the smoker knows that the non-smoker prefers asking her/him to stop smoking—compared to directly going away—(case (b)(ii)), the smoker might also prefer that the non-smoker first asks for stopping smoking before she/he stops smoking.

Notice that the smoker will never go away, since the norm “allows” to smoke, while non-smokers might have to leave the pub (case (b)(i)) or suffer smoking. Part (a) of the proposition tells us that a non-smoker will accept smoking even though her/his subjective perception of the danger of second-hand smoking, expressed by E, is higher than her/his utility from being together, i.e. $T_N < E$. This seemingly paradoxical behavior occurs because smoking is not considered as impolite and asking for stopping smoking involves social costs due to the social norm. The social norm thus reduces the non-smoker’s bargaining power in our game, and the non-smoker hesitates to ask.\footnote{Our concept of bargaining power is similar to the \textit{Best Alternative To a Negotiated Agreement} (BATNA) (cf. e.g. Korobkin, 2004; Spangler, 2003; Breslin and Rubin, 1991; Fisher et al., 1992):}

Normally we would
argue that the non-smoker should just leave if $T_N < E$. But going away is a step that is considered as impolite, whereby the non-smoker hesitates to leave. The smoker, in turn, has no reason to regard her/his behavior as impolite, because she/he acts in line with the social norm. Without the social norm that accommodating smoking is standard, asking for stopping smoking would not involve any costs ($A_N = 0$): condition $T_N - A_N \geq -L_N$ was more often fulfilled, so that the smoker would more often decide not to smoke. Moreover, without the social norm that going away is impolite—that is, when $L_N = 0$—smoking would be less often accepted, since condition $T_N \geq E - L_N$ was less often fulfilled; especially the behavior that non-smokers accept smoking though their perception is $T_N < E$ would not occur.

3.2 When accommodating smoking is not the social norm

If accommodating smoking is not the social norm, then it is the smoker who has to ask whether she/he may smoke. The two players then play the following three-stage game:

Game 2:

Stage 1 The smoker decides whether to ask for the non-smoker’s approval to smoke. If the smoker goes away or does not ask permission to smoke the game will end. In the first case, the smoker smokes without the non-smoker, in the latter they stay together.

Stage 2 If the smoker asks for permission to smoke, the non-smoker decides whether or not to allow smoking. If the non-smoker allows the smoker to smoke, the game ends and both stay together with the smoker smoking. Moreover, the non-smoker has the option to go away, in which case the game ends.

Stage 3 If the non-smoker does not want the smoker to smoke, the smoker decides whether she/he stays or goes. The game ends.

The game is illustrated by the game tree in Figure 2; one can also find the payoff vectors the smoker can stay and smoke, the non-smoker can only go away.
\(P_j, j = \{1, 2, \ldots, 6\} \), there. We obtain:

Proposition 2. Depending on parameter constellation, Game 2 possesses the following subgame-perfect Nash equilibria:

(a) If \(B - L_S \leq T_S \), there exists a unique subgame-perfect Nash equilibrium with the sequence of actions (do not smoke) and payoff vector \(P_2 = (T_S, T_N) \).

(b) If \(B - L_S > T_S \) and

(i) \(T_N < E \), the unique subgame-perfect Nash equilibrium is described by the sequence of actions (go) and payoff vector \(P_1 = (B - L_S, 0) \);

(ii) \(T_N \geq E \), the unique subgame-perfect Nash equilibrium is described by the sequence of actions (ask, allow) and payoff vector \(P_4 = (B + T_S - A_S, T_N - E) \).

Proof: See appendix.

Three outcomes are possible in the equilibrium: the smoker directly decides not to smoke, directly decides to leave, or asks whether she/he may smoke and the non-smoker allows it. If \(T_S \geq B - L_S \) the smoker prefers being together without smoking, compared to the situation where she/he goes away to smoke. Since the non-smoker knows this, the non-smoker will not allow the smoker to smoke, because the threat that the smoker will leave is not credible. Knowing this, in turn, there is no point for asking for being allowed to smoke. Hence, this condition is a necessary and sufficient condition for the outcome “do not smoke”. If, to the contrary, \(B - L_S > T_S \) holds, the smoker’s threat of leaving is credible. Therefore, the non-smoker must reflect whether she/he rather wants to be together with the smoker suffering the smoke than being alone. Knowing the non-smoker’s consideration in this regard, the smoker will directly go away when the non-smoker prefers being alone instead of suffering the smoke (case (b)(i)); there is no reason for asking for permission, since the request will be refused anyway. However, if \(T_N \geq E \), the smoker knows that the non-smoker will not reject her/his request, so that she/he will ask whether she/he may smoke and receive permission to do so (case (b)(ii)).

We obtain the reversed image of the case where accommodating smoking is the norm: the non-smoker will never go away, since the social norm of not accommodating smoking
strengthens the non-smoker’s bargaining power. With \(L_S = 0 \) inequality \(B - L_S \leq T_S \) was fulfilled less often, so that the smoker would smoke more often. Again, since people want to avoid behaving in a way that by the majority of people is considered as impolite (i.e. is against the social norm), now it can happen that the smoker does not smoke even if \(B > T_S \), that is, when she/he rather would prefer to smoke instead of not smoking in companion with the non-smoker. One might say that this case is comparable to that where accommodating smoking is the norm. However, smokers produce a dangerous externality, non-smokers do not. Therefore, the two cases differ qualitatively.

4 Policy implications

Second-hand smoke is an instance of a negative externality. Would both players cooperate, the efficient outcome of their private negotiation is deduced from maximizing the sum of both players’ payoffs (following the concept of utilitarianism). In this scenario both players have to choose one out of three options: 'being together with smoke,' 'being together without smoke,' or 'not being together and the smoker smokes.' We obtain:

Proposition 3. If both players cooperate and maximize the sum of their payoffs, the optimal payoffs are given by:

\[
P^* = \begin{cases}
(T_S, T_N) & \text{if } E > B \text{ and } T_S + T_N > B; \\
(B + T_S, T_N - E) & \text{if } E < B \text{ and } E < T_S + T_N; \\
(B, 0) & \text{otherwise.}
\end{cases}
\]

Proof: See appendix.

In the optimum, the non-smoker only has to suffer second-hand smoke (second line of (1)) if the group as a whole benefits from smoking and from being together more than it loses from the externality of second-hand smoke. If the group benefits from being together more than from smoking and the damage from smoking is higher than its benefits, it is optimal to stay together without smoking. Finally, if for the group as a whole being together neither compensates for the damage of smoking nor bears more utility than smoking, it is
optimal to go separate ways, so that the smoker can smoke without aggrieving the non-smoker. Comparing these conditions of social optimum with these of the private game, it becomes clear that the private outcome cannot guarantee socially optimal outcomes.

Obviously, only good friends will do so and achieve the efficient cooperative solution. With (sufficiently) selfish individuals a game is played and the corresponding private arrangements may produce inefficient outcomes. Thus government intervention may be justified. In most countries accommodating smoking at least has been the norm, and in a lot of countries or situations it still is. As a consequence, social interaction would often be accompanied by smoking unduly often. To contain the problem of excessive smoking, politicians have introduced smoking bans at many places all over the world.9 However, a theoretical scrutiny of alternative instruments is missing.

4.1 The introduction of smoking and non-smoking areas

In the context of smoking policy the introduction of separated smoking and non-smoking areas is often discussed. It is argued that the establishment of smoking and no-smoking areas is sufficient to overcome the problem of second-hand smoke. However, this is ultimately not the case. To demonstrate this, we simply reinterpret the games already analyzed in Section 3.

Imagine there are indeed separated smoking and non-smoking areas. The smoker and non-smoker are together and have to decide where to go. If accommodating smoking is the norm, at stage 1 of the game, the smoker can go away, opt for the non-smoking area or for the smoking area. If the smoker goes away or opts for the non-smoking area the game ends. However, if the smoker opts for the smoking area, the non-smoker can go away, accept going to the smoking area, or ask for going to the non-smoking area. If the non-smoker accepts or goes away the game ends, but if the non-smoker asks for going to

9Australia, Cuba, England, Estonia, Finland, France, Ireland, Italy, Latvia, the Netherlands, Macedonia, Malta, New Zealand, Norway, Scotland, South Africa, Spain, Sweden, Switzerland (Kanton Tessin), Tanzania, Thailand, several states and cities in the United States (e.g. California, New York, Montana and Washington), Wales.
the non-smoking area, the smoker at stage 3 can go away, accept going to the non-smoking area, or insist on going to the smoking area. If the smoker really insists on going to the smoking area, the non-smoker could accept going to the smoking area, or can go away. Therefore, both players play the same game as analyzed in Section 3, the only difference is that the actions are relabeled (see Figure 3). Analogously, one can reinterpret Game 2. It directly follows that the establishment of smoking and non-smoking areas is not sufficient to overcome the identified problem of social norms in the social interaction of the smoker and non-smoker. The introduction of the two areas simply doesn’t change the fact that accommodating smoking is or is not the social norm. If demanding going to the non-smoking area is not in line with the norm, it represents a deviant behavior and causes a feeling of guilt which involves costs A_N. The power of the social norm is likely to be weakened by official anti-smoking policy, so that the cost A_N and L_N are lower, but the bias in the distribution of bargaining power remains. Overall, the bargaining power of non-smokers would be strengthened by the introduction of non-smoking areas, but inefficiency may persist as long as the social norm favors smokers.

In the Appendix, we show, too, that one yields qualitatively the same result if the non-smoker moves first (see Lemma 1). Therefore, the establishment of non-smoking and smoking areas is not a tool that solves our problem.10

4.2 Are smoking bans really required?

In many countries it has been decided to enact more or less strict smoking bans in the last couple of years (cf. footnote 9). Smoking bans, however, involve the drawback that they even do not allow smoking when it is efficient. All the efficient outcomes in our model that involve smoking would be excluded. Hence, bans may only represent a second-best solution. The private outcomes, however, rely on the subjectively perceived negative effect of second-hand smoke, E, and many individuals presumably still underestimate the hazard of second-hand smoke.

10However, designated smoking areas might solve the problem of passive smoking of non-smokers, who are not interacting with smokers.
of second-hand smoke.11 The objective, real damage of smoking is probably significantly higher, so that it is unclear how often a socially optimal outcome arises from private action. Be that as it may, a presumably second-best smoking ban should represent only a last resort.

The alternative classical tools are Pigouvian taxes or subsidies, the creation of markets and establishing property rights so that a Coasean solution takes place (Cropper and Oates 1992). The Pigouvian subsidy involves well-known problems, since they generate bad incentives. Taxes, in turn, are widespread and are found to reduce smoking (e.g. Chaloupka, 1991; Hammar and Carlsson, 2005). However, they do not influence the decision of the remaining smokers whether they start smoking in interaction with a non-smoker.12 Hence they do not solve our problem; in fact, accepting smoking would have to be taxed, or starting smoking in companion of non-smokers, which is not feasible. The Coasean solution, in turn, may also fail to obtain because of the psychological transaction costs associated with asking an individual to refrain from smoking, addressed in this paper. Therefore, external effects in the area of consumption, like the instance of second-hand smoke, may have to be solved by bans:13 limited smoking bans in closed spaces where people socially interact ought to be introduced.14 An open issue in reference to smoking

11There is no doubt that smoking is significantly dangerous for passive smokers (Chowdhury and Rayford, 2001; DKFZ, 2005a; Gruber, 2001; IARC, 2004; Li, 2001; Partanen \textit{et al.}, 1997; Schuller \textit{et al.}, 2002; Silverman \textit{et al.}, 1995). Passive smoking is linked to higher rates of cancer and heart disease in non-smokers (Evans \textit{et al.}, 1999: 728). It can also cause other health problems like asthma. The number of early deaths caused by second-hand smoke in Germany, for instance, is estimated to amount to 3300 per year (DKFZ, 2005b).

12It is open whether excise taxes have a significant effect on the decision to start or quit smoking (Hammar and Carlsson, 2005).

13Sohmen (1976, p. 270) emphasizes that solving external effects in consumption is much more difficult than in production, since there prevail traditional patterns of behavior that prevent solutions based on compensations in the Coasean sense. Schelling (1980, pp. 32-33) also emphasizes that an important limitation of solving conflicts via bargaining is absence of a custom of bidding to pay for a particular right. Beyond that, if compensations would actually be paid, everybody would feign externalities involving activities to receive some.

14Coase emphasized the reciprocal nature of externalities, namely that avoiding the harm of the non-
bans, however, is whether they will be accepted and enforced in practice.

5 Conclusion

The paper is twofold. In the first part, we incorporate insights of social psychology and experimental economics on guilt aversion into a game-theoretic model. We highlight the crucial role of social norms in determining the behavior of smokers and non-smokers in social interaction. Asking for something that is not in line with social norms represents deviant behavior and may cause a feeling of guilt, as experiments in social psychology and economics have proved. If accommodating smoking is the norm, non-smokers will hesitate to ask smokers to stop smoking, since asking is not customary and thus involves utility losses. Additionally, going away is considered as rude and causes a feeling of guilt. Extending the standard model correspondingly, we explain why non-smokers may, in social interaction with smokers, accept smoking even though they would, overall, actually prefer not to be trapped in social interaction with a smoker who smokes. Contrariwise, if tolerating smoking is not the social norm, the smoker hesitates to ask whether she/he may smoke. Thus social norms and the will to behave politely determine and distort the distribution of bargaining power among smokers and non-smokers when they socially interact. This generates, in both cases, a social inefficiency. Since inefficiently much smoking involves inefficiently high risk of health damage and of death, while inefficiently low incidence of smoking solely involves decreased pleasure from smoking, the former case appears more severe. A typical instance for the problem is the case of teenagers in schools.15 A child would rarely ask smoking classmates to stop smoking because the social costs of doing so—namely being considered as very “uncool”—are significantly high.

15In many schools, for instance in Germany, smoking still is or has been allowed in smoking areas.15Powell \textit{et al.} (2005) shows that the probability to start smoking of high-school students rises with the amount of smoking fellow students.
In the second part, we embed our results in a smoking policy debate. We show that the introduction of smoking and non-smoking areas does not suffice to overcome the distortion of bargaining power generated by social norms. Without a well-founded welfare analysis, enriched by empirical facts, we cannot provide definite policy implications from within our model. However, we argue that social norms produce transaction cost and render Coasean bargaining inefficient, so that all methods but smoking bans turn out to be inadequate.\footnote{Coase (1960: 15-19) himself stated that his theorem fails if transaction cost is too high. See also Schweizer (1988).}

Accordingly, we suggest smoking bans in all closed spaces where smokers and non-smokers socially interact, for instance in restaurants, pubs, bars and cafés—though bans represent only a second-best instrument. Our model especially suggests introducing smoking bans at places where the identified social transaction costs caused by social norms are substantially high, for instance, at schools where the social pressure among teenagers is massive. Hence our analysis supports corresponding policies already implemented all over the world. In addition, models of limited self-control and weak will (O’Donoghue and Rabin, 1999; Suranovic \textit{et al.}, 1999) suggest that smoking bans support many smokers who want to give up smoking anyway; Kan (2007) finds that a smoker’s intention to quit smoking has a positive effect on the smoker’s support for smoking bans and cigarette excise tax increases, which lends support for the lack of self-control hypothesis. This conclusion is especially in line with the results of Gruber and Mullainathan (2002) who find that taxation of cigarettes (i.e. restricted access to tobacco) makes smokers happier as the tax provides a valuable self-control device (see also Gruber and Köszegi, 2004). Finally, in the model of Bernheim and Rangel (2004: 1580), a restriction of public consumption of goods like tobacco—for instance a smoking ban—reduces people’s exposure to cues that can cause addictive behavior by mistaken decisions.

Our paper opens many avenues to future research. An interesting question to investigate is which effect the extension of the model to more than one smoker and one non-smoker would have? The bargaining power of a group may increase in its number of members, but starting a conflict by asking smokers not to smoke becomes more costly when a non-smoker has to ask more than one smoker. Additionally, the non-smoker asking smokers
to stop smoking might disturb other non-smokers by starting a conflict when the group of non-smokers consists of heterogeneous members. Another extension is to analyze repeated games where players could play dynamic strategies like trigger strategies. Smokers, e.g., could initially follow the strategy to continue with smoking more often, to strengthen their bargaining power.

Moreover, future research could elaborate under which environment which social norm prevails and how strong such norms are. Related, an interesting aspect to investigate is why smoking in the public in some time period has been generally accepted and in others not. Future research could also address the question whether there exists a potential trade-off between public and private smoking. On the one hand, it is possible that smokers who are not allowed to smoke publicly so often anymore will smoke more often at home, so that their children will suffer more second-hand smoke than before. On the other hand, O’Donoghue and Rabin (1999), Suranovic et al. (1999), and Bernheim and Rangel (2004) suggest that there will be less smokers and less smoking of smokers in general, once a ban has been established.
Appendix

A Proofs

Proof of Proposition 1. Consider the game tree depicted in Figure 1 and the payoffs P_j, $j = \{1, 2, \ldots, 8\}$, there. Beginning at stage four, the non-smoker’s optimum choice is “go”, if $-L_N > T_N - E$. If $T_N \geq E - L_N$, the non-smoker accepts the smoking of the smoker.

At stage three, the smoker compares payoff vector P_8 with P_5 and P_6, if $T_N \geq E - L_N$; otherwise, $T_N < E - L_N$, the smoker has to select from the alternatives P_7, P_5 and P_6. In the case where $T_N \geq E - L_N$, the smoker strictly prefers payoff vector P_8 to P_5 or to P_6, and therefore chooses to continue with smoking. However, if $T_N < E - L_N$ and the smoker has to select from payoff vectors P_7, P_5 and P_6, the smoker will choose “stop smoking”, if $B \leq T_S$. In contrast, if $B > T_S$ the smoker will choose “continue”.

Turning to stage two, the non-smoker has to consider several constellations. If $T_N \geq E - L_N$ the non-smoker’s effective set of possible outcomes to consider is P_3, P_4 and P_8. Since $T_N \geq E - L_N$, “accept” is the dominant strategy in this subgame, so that the outcome is described by P_4. However, if $T_N < E - L_N$ things become more complex. If it additionally holds that $B > T_S$, then the non-smoker has effectively to consider P_3, P_4 and P_7. The non-smoker always prefers P_3 compared to P_7. Because of $E - L_N > T_N$ the non-smoker also prefers P_3 compared to P_4, and therefore plays “go”. In contrast, if additionally to $T_N < E - L_N$ it holds that $B \leq T_S$, then the non-smoker has to compare outcomes P_3, P_4 and P_6. Due to $T_N - E < -L_N$ outcome P_3 dominates outcome P_4. Comparing P_3 and P_6, the non-smoker plays “ask” and we arrive at outcome P_6, because $T_N - A_N \geq -L_N$ always holds.

Eventually we have to find the subgame-perfect strategies at stage one. If $T_N \geq E - L_N$ the smoker must compare P_1, P_2 and P_4. One can easily prove that the subgame-perfect equilibrium is described by (smoke, accept) and payoff vector P_4. If $T_N < E - L_N$, however, we have to consider two cases. If it additionally holds that $B > T_S$, the smoker
compares her/his payoffs in P_1, P_2 and P_3. Since $B > T_S$, “do not smoke” is no option, and “go” is also no option. Thus the smoker smokes and we end in the terminal node with payoff P_3. In contrast, if we consider scenario $T_N < E - L_N$ combined with the constellation $B \leq T_S$, the smoker effectively compares payoffs P_1, P_2 and P_6. Outcome P_1 is strictly dominated by P_2 and P_6. Between payoff vector P_2 and P_6, in turn, the smoker is indifferent, and we obtain two subgame-perfect equilibria, (do not smoke) and (smoke, ask, stop smoking).

\[\square\]

Proof of Proposition 2. Consider Figure 2 and the corresponding payoff vectors P_j, $j = \{1, 2, \ldots, 6\}$, of the end nodes. Beginning at the **last stage** the smoker chooses “go” whenever $B - L_S > T_S$ holds, and “stay”, otherwise.

At **stage two**, in turn, the non-smoker will play “allow” if $B - L_S > T_S$ and additionally $T_N \geq E$ holds. If $B - L_S > T_S$ holds together with $T_N < E$, in contrast, the non-smoker chooses “do not allow”. If $B - L_S \leq T_S$ holds, the non-smoker definitely decides to select “do not allow”.

Eventually at **stage one**, the smoker compares P_1, P_2, and P_4, if the parameter constellation is such that $B - L_S > T_S$ and $T_N \geq E$. Because of $L_S > A_S$, we know that $T_S + B - A_S > B - L_S$, so that we can drop option P_1. If it now holds that $B - A_S \geq 0$, the smoker plays “ask”, and we arrive at the end node with payoff P_4.17 If $B - L_S > T_S$, $T_N \geq E$ but $B - A_S < 0$ the smoker will choose “do not smoke” and payoffs are given by P_2. If we now turn to the constellation $B - L_S > T_S$ and $T_N < E$, the smoker considers P_1, P_2, and P_5. We can directly exclude P_5 and P_2, so that the smoker will play “go” right at the beginning of the game. Finally, if $B - L_S \leq T_S$, the smoker must compare P_1, P_2, and P_6. We immediately see that the smoker will decide to play “do not smoke”, and the outcome is described by P_2.

\[\square\]

17We assume that the smoker prefers being together and smoking to being together without smoking. Therefore, the smoker chooses “ask” also when $B - A_S = 0$.

19
Proof of Proposition 3. We have to select the maximizing option from the following three sum of payoffs:

- $T_S + T_N$ (both together without smoke)
- $T_S + T_N + B - E$ (both together with smoke)
- B (both separated)

The optimum alternative is found by comparing the three options with each other, given the parameter constellation. It is easy to prove that the ranking of the alternatives depends on $E \gtrless B$, $B \gtrless T_S + T_N$, and $E \gtrless T_S + T_N$. As there are three alternatives that have to be compared pairwise, there are $2^3 = 8$ permutations. If $E > B$ and $T_S + T_N > B$ the optimum is that both come together without smoking, irrespective of whether $E \gtrless T_S + T_N$, which covers two permutations. If $B > E$ and $T_S + T_N > E$ the optimum is that both come together and the smoker smokes, irrespective of whether $B \gtrless T_S + T_N$, which covers further two permutations. Moreover, if $B > T_S + T_N$ and $E > T_S + T_N$ the optimum is that both stay separated, so that the smoker can smoke alone, which again covers further two permutations. Two permutations remain to analyze, namely, (i) $E > B$, $B > T_S + T_N$, and $T_S + T_N > E$, and (ii) $B > E$, $T_S + T_N < E$, and $B < T_S + T_N$. Both constellations are inconsistent and cannot exist; from (i) $E > B > T_S + T_N$, for instance, it directly follows that $T_S + T_N \overset{!}{<} E$.

\[\square \]
B Smoking and non-smoking areas: when the non-smoker moves first

When there are separated smoking and no smoking areas and the non-smoker moves first, the following game is played (see Figure 4):

Game 3:

Stage 1 The non-smoker decides whether to propose going to the smoking area or to the non-smoking area, or to go directly away. If she/he proposes going to the smoking area both stay there together and the game ends. If the non-smoker decides to leave instead, the smoker smokes alone and the game ends.

Stage 2 If the non-smoker has chosen to propose to go to the non-smoking area, the smoker decides whether she/he goes away, accepts going to the non-smoking area, or to veto the non-smoker’s proposal. If she/he accepts going to the non-smoking area, the game ends and both stay together; if the smoker goes away, she/he smokes alone and the game ends as well.

Stage 3 If the smoker vetoes going to the non-smoking area, the non-smoker has to decide whether to join the smoker and to go to the smoking area or not. If he/she joins, both stay together at the smoking area and the smoker smokes. If the non-smoker decides not to join she/he has to leave and the smoker goes to the smoking area and smokes alone. In both cases the game ends.

We obtain:
Lemma 1. Depending on parameter constellation, Game 3 possesses the following sub-game perfect Nash equilibria:

(a) If $T_N - E \geq -L_N$, the unique subgame-perfect Nash equilibrium is described by the sequence of actions (smoking area) and payoff $P_2 = (B + T_S, T_N - E)$.

(b) If $T_N - E < -L_N$ and

(i) $B > T_S$, the unique subgame-perfect Nash equilibrium is described by the sequence of actions (go) and payoff $P_1 = (B, -L_N)$.

(ii) $B \leq T_S$, the unique subgame-perfect Nash equilibrium is described by the sequence of actions (non-smoking area, accept) and payoff $P_4 = (T_S, T_N)$.

Proof of Lemma 1. Beginning at stage 3, the non-smoker will accept going to the smoking area if $-L_N \leq T_N - E$ and leaves when $-L_N > T_N - E$. At stage 2 the smoker, in turn, will clearly play “veto” if $T_N - E \geq -L_N$. However, if $T_N - E < -L_N$ she/he compares $B - L_S$, B and T_S. Therefore, the smoker will accept going to the non-smoking location if $B \leq T_S$, but will play “veto” otherwise. Arriving at stage 1, the non-smoker has to compare $T_N - A_N - E$, $-L_N$, and $T_N - E$, if $T_N - E \geq -L_N$. Hence, she/he plays “going to the smoking area”. In contrast, if $T_N - E < -L_N$ holds, her/his decision depends on inequality $B \gtrless T_S$. If $B > T_S$, she/he plays “go”, and “go to the smoking area” else.

\[\square \]
References

[42] Silverman, D.T., L.M. Brown, R.N. Hoover, M. Schiffman, K.D. Lillimoe, J.B. Schoenberg, G.M. Swanson, R.B. Hayes, R.S. Greenberg, J. Benicou,

Figure 1: Game tree of Game 1 where accommodating smoking is the social norm and payoffs are given by $P_1 = (B - L_S, 0)$, $P_2 = (T_S, T_N)$, $P_3 = (B, -L_N)$, $P_4 = (B + T_S, T_N - E)$, $P_5 = (B - L_S, -A_N)$, $P_6 = (T_S, T_N - A_N)$, $P_7 = (B, -A_N - L_N)$, and $P_8 = (B + T_S, T_N - A_N - E)$.
Figure 2: Game tree of Game 2 where accommodating smoking is not the social norm and payoffs are given by $P_1 = (B - L_S, 0)$, $P_2 = (T_S, T_N)$, $P_3 = (B - A_S, -L_N)$, $P_4 = (B + T_S - A_S, T_N - E)$, $P_5 = (B - A_S - L_S, 0)$, and $P_6 = (T_S - A_S, T_N)$.
Figure 3: Game tree of Game 1 with relabeled actions when there exist smoking and non-smoking areas; payoffs are again given by $P_1 = (B - L_S, 0)$, $P_2 = (T_S, T_N)$, $P_3 = (B, -L_N)$, $P_4 = (B + T_S, T_N - E)$, $P_5 = (B - L_S, -A_N)$, $P_6 = (T_S, T_N - A_N)$, $P_7 = (B, -A_N - L_N)$, and $P_8 = (B + T_S, T_N - A_N - E)$.
Figure 4: Game tree of game where there exist smoking and non-smoking areas and the non-smoker moves first; payoffs are given by $P_1 = (B, -L_N)$, $P_2 = (B + T_S, T_N - E)$, $P_3 = (B - L_S, -A_N)$, $P_4 = (T_S, T_N)$, $P_5 = (B, -A_N - L_N)$, and $P_6 = (B + T_S, T_N - A_N - E)$.
Unemployment and Gang Crime:
Could Prosperity Backfire?*

Panu Poutvaara† Mikael Priks‡

May 22, 2007

Abstract

Empirical evidence reveals that unemployment tends to increase property crime but that it has no effect on violent crime. To explain these facts, we examine a model of criminal gangs and suggest that there is a substitution effect between property crime and violent crime at work. In the model, non-monetary valuation of gang membership is private knowledge. Thus the leaders face a trade-off between less crime per member in large gangs and more crime per member in small gangs. Unemployment increases the relative attractiveness of large and less violent gangs engaging more in property crime.

JEL Classification Codes: K42, D71, D74

Key Words: Violence, Crime, Gangs, Unemployment, Identity

*We wish to thank Larry Blume for helpful comments.
†University of Helsinki, CEBR, CESifo, HECER, IZA and RUESG. Corresponding author. Address: Department of Economics, Arkadiankatu 7 (P.O. Box 17), 00014 University of Helsinki, Finland (E-mail: panu.poutvaara@helsinki.fi).
‡Center for Economic Studies, University of Munich, Schackstrasse 4, 80539, Munich, Germany (E-mail: mikael.priks@lmu.de).
1 Introduction

Gang crime is a serious and common phenomenon. Based on survey results, the US Department of Justice estimates that more than 24,500 gangs and 772,500 members were active in 3,300 jurisdictions across the United States in 2000 (OJJDP Fact Sheet, 2002). In Los Angeles, for example, 720 gangs consisting of 39,000 members have been identified. These gangs are responsible for a majority of the murders in the city (Los Angeles Times, February 6, 2007). Moreover, according to a survey of 212 US schools made in 2006 by the “National Gang Crime Research Center”, 25 percent of American schools reported a gang shooting near their school during the last year (Knox 2006).

In richer countries, such as the United States, Italy or France, criminal gangs are often concentrated to relatively poor areas. Organized crime has even more severely infected countries with widespread poverty, heavy corruption and history of violent internal conflicts, like Russia, Serbia and Montenegro, and several other former Soviet or Yugoslav Republics. These observations have suggested that tackling unemployment problem should automatically reduce crime, by improving the outside options of potential perpetrators.

However, empirical evidence has not established such general connection. In an extensive analysis of 63 studies, Chiricos (1987) finds that unemployment has a statistically significant positive effect on property crime in 40 percent of the studies, while the effect on violence is statistically significant and positive in only 22 percent of the cases. More recently, Raphael and Winter-Ebmer (2001), Agell and Nilsson (2003) and Fougère et al. (2006) find a strong positive link between unemployment and property crime but a small or no link between unemployment and violent crime for the US, Sweden and France, respectively. Levitt (2004, p. 170), summarizing a number of empirical papers, writes that “almost all of these studies report a statistically significant but substantively small relationship between unemployment rates and property crime...Violent crime, however, does not vary systematically with the unemployment rate.”

In this paper we offer a theory of street gangs, which can help to explain the ambiguity between unemployment and crime.

To reflect the empirical evidence of the gang structure, we model gangs to consist
of leaders and ordinary members. Following Padilla (1992), utility from belonging to a gang consists of social identity, prestige, protection and respect on the streets, and benefits from networking with the like-minded. Members differ in their valuation of these benefits, which is their private knowledge. In return, members have to commit violent crime, such as extortion or gang violence with the purpose to obtain drug turfs, or property crime, like pickpocketing or auto theft. Leaders benefit from crime committed by members. In addition, leaders reap benefits from the total number of members in terms of prestige, and can, in line with empirical evidence (Padilla 1992 and Levitt and Venkatesh 2000), decide whom to admit as members. Because there are adverse labor market consequences of gang membership (Hagedorn 1988 and Padilla 1992), our model assumes that gang members cannot find jobs in the legal labor market.

Members who value membership more can always mimic those with lower valuation. As a consequence of this, leaders face a trade-off. One alternative is to select a highly-demanding norm that results in a small group with a high level of crime per member, either in terms of severe property crime or violent crime. The cost is that the leader has fewer followers to give him prestige. The other alternative is to go for a less-demanding norm where members are, for example, required to steal cars, leading to a larger group. Our analysis reveals that a reduction in unemployment may encourage leaders to either marginally moderate their demands, or to radically change to smaller gangs with more severe crime. Because more unemployment reduces relatively more the amount of crime that leaders can require from the type valuing identity less, leaders may shift focus from property crime to violent crime at the cost of losing the members valuing membership least. This helps to explain the empirical observations that, in aggregate, unemployment tends to increase property crime but not violent crime.

studies other determinants of organized crime.

In an intriguing recent contribution, Mansour et al. (2006) model the formation of gang structure as endogenous. They find that deterrence can have the effect of breaking up drug cartels formed by criminal organizations, which leads to larger output and lower prices. Like Mansour et al. (2006), we also identify a case in which a change that could be ex ante expected to have an unambiguously positive impact, in our case reduction in unemployment, may backfire by increasing criminality. However, in our framework backfiring may happen without a change in the number of gangs.

The rest of the paper is organized as follows. The model and basic results are presented in Section 2. In Section 3, we show how unemployment affects crime. Section 4 concludes.

2 The Model

A gang consists of leaders and members. Members may join a gang in order to obtain “identity”, as is most evident in case of ethnic gangs, or to benefit from protection that the gang provides to its members (see e.g. Padilla 1992 and Anderson 1999). In exchange for providing membership benefits, leaders can, but need not, require members to commit crimes. There are two types of crime: property crime and violent crime. By violent crime, we denote more severe crime like robberies, extortion, or gang violence with the purpose to obtain drug turfs. There is a discontinuity in the amount of violent crime one can commit: it has to be either zero or reach a minimum level, denoted by c_v. Property crime, on the other hand, can take any non-negative values. These assumptions are motivated by the empirical facts that violent crimes, even in their milder forms, in most countries are punished harshly by the society. Property crime, however, may start from modest shoplifting, which may lead to low costs if caught, and range up to stealing cars or burglary.

Leaders derive monetary utility from crimes that members are required to commit on their behalf, and from the total number of members. There are two types of members, 1 and 2, differing in their valuation of gang membership. We denote variables
referring to type j, $j \in \{1, 2\}$ by subscript j. The number of potential members of type j is n_j, and the number of members of type j who stay and are not expelled is m_j, giving as total membership $m = m_1 + m_2$. The number of leaders is normalized to unity.

At the first stage, leaders declare a minimum level of crimes (\hat{c}_p, \hat{c}_v) required from members. At the second stage, members decide how much crimes to commit. After observing the crimes committed by individual members, leaders decide whether to keep them or expel them.

Leaders cannot distinguish an individual member’s private valuation of membership. This is a reasonable assumption, as members who value identity highly have an incentive to lie about their type. Leaders therefore must establish a norm asking for one level of crimes only.

Committing property crimes of level c_p generates a cost $\lambda_p c_p$. λ_p is a marginal cost parameter capturing sanctions by the justice system, as well as possible social and psychological costs. Committing violent crimes of level c_v generates a cost $\lambda_v c_v$. λ_v is a marginal cost parameter capturing sanctions by the justice system, social and psychological costs, as well as the risk of injuries and physical or psychological suffering associated with criminal activities. Members of type j receive benefits α_j from membership, so that $\alpha_2 > \alpha_1$. Total utility for a member of type j who chooses a level of property (violent) crimes c^p_j (c^v_j) and is not expelled is

$$u_j = \alpha_j - \lambda_p c^p_j - \lambda_v c^v_j,$$

while the utility of the expelled members is outside option w. Outside option w may reflect, among other things, labor market prospects of tentative members. As membership in a gang may easily stigmatize, it is assumed that outside option is available only for those who do not belong to a gang.\footnote{Our results would generalize into more than 2 discrete groups.} \footnote{While we model the outside option as uniform for all members, the results could be easily generalized to a case in which there are several groups of members, each with its own outside option. In that case, leaders could price discriminate between potential members belonging to population groups with varying levels of outside option. What drives the result is that the difference between the valuation of gang membership and the outside option is private knowledge. If we would assume that valuation is common knowledge, then all results would go through assuming that the outside option is private knowledge, and there are two possible levels. Our framework could also be extended to include both...}
Aggregate levels of crimes that members commit are therefore

\[C^p = m_1c_1^p + m_2c_2^p \]
\[C^v = m_1c_1^v + m_2c_2^v. \]

(2)

Leaders receive utility

\[u_l = \pi m + \beta^p C^p + \beta^v C^v. \]

(3)

By \(\pi > 0, \beta^p > 0, \beta^v > 0 \), leaders receive a positive utility from the aggregate level of property and violent crimes by their gang members, and from the number of members who stay. One reason why leaders have a reason to care about the number of members, even if members do not, is that leaders are evaluated according to how many followers they have. We call the utility that leaders derive from the number of followers prestige.

Leaders may expel those who commit less crimes than they require, in which case the expelled lose membership benefits and receive payoff of outside option \(w \). Leaders announce a minimum level of criminality required, characterized by \((\hat{c}_p, \hat{c}_v)\), and then expel the members who do not fulfill it. Expulsion following defection is necessary to maintain credibility. Crimes are committed and membership benefits are received as a flow. For both types of members, the participation constraint is that the expected utility from membership must be higher than the outside option, implying that requirement

\[\alpha_j - \lambda^p c_j^p - \lambda^v c_j^v \geq w, \]

needs to be satisfied for type \(j \) to stay. Notice that whether violent crime is profitable for leaders depends on how the difference between the returns to different types of crime to leaders relates to the difference between the costs of different types of crime to members. Without loss of generality, we assume that if indifferent between violent crime and property crime, leaders choose property crime. We find:

Lemma 1 Requiring a positive level of violent crime can be profitable only if

\[\beta^v > \frac{\lambda^v}{\lambda^p} \beta^p \]

(4)

being private knowledge, in which case there would be several discrete groups.
and

$$\alpha_2 \geq w + \lambda_v e^v.$$

Proof. See Appendix. ■

Lemma 1 provides a necessary but not a sufficient condition for a gang leader to require violent crime. The condition is not sufficient as it does not compare yet payoffs from alternative strategies. For example, requiring only property crime may be optimal to keep members with lower valuation on board. We next establish that leaders do at least as well by focusing on only one type of crime than by asking a positive level of both property and gang crime:

Lemma 2 Focusing on only property or violent crime gives at least as high a utility than requiring a strictly positive level of both.

Proof. See Appendix. ■

Leaders face two alternative strategies. One is to choose such level of crimes that both types stay, and another to choose such a level that only type 2 stays. When pursuing either strategy, leaders have to decide whether to ask for property crime or violent crime. Note that as there is a minimum value of violent crime that is feasible, it may be that the strategy of requiring violent crime is not feasible. The condition that has to be satisfied for requiring violent crime from type 1 is

Condition 1. Leaders can require violent crime from type-1 members if and only if

$$w \leq \alpha_1 - \lambda_v e^v.$$

Correspondingly, it holds for type 2 that

Condition 2. Leaders can require violent crime from type-2 members if and only if

$$w \leq \alpha_2 - \lambda_v e^v.$$
Provided Condition 1 is satisfied, leaders can choose a strategy of requiring a level of violence with which type-1 members are indifferent between staying and leaving. This is given by

\[\hat{c}_v^1 = \frac{\alpha_1 - w}{\lambda^v}. \] (5)

Provided that Condition 2 is satisfied, leaders can choose a strategy of requiring a level of violence with which type-2 members are indifferent between staying and leaving. This is given by

\[\hat{c}_v^2 = \frac{\alpha_2 - w}{\lambda^v}. \] (6)

Note that as \(\alpha_2 > \alpha_1 \), Condition 2 implies that Condition 1 is also satisfied. The reverse need not hold. The other two strategies are choosing a requirement of property crime so that either both types or only type-2 stays. If leaders want to ensure both types to stay with property crime, they choose

\[\hat{c}_p^1 = \frac{\alpha_1 - w}{\lambda^p} \] (7)

for the \((n_1 + n_2)\) members that stay. If leaders are willing to sacrifice type 1 members to extract more property crime from type 2, they choose

\[\hat{c}_p^2 = \frac{\alpha_2 - w}{\lambda^p}, \] (8)

for the \(n_2\) staying members.

We can now solve for the optimal strategies by leaders:

Proposition 1 (i) If (4) or Condition 2 is not satisfied, leaders choose \(\hat{c}_v^1 \) if

\[n_1 \pi \geq \beta^p (n_2 \hat{c}_2^p - (n_1 + n_2) \hat{c}_1^p) \] (9)

and \(\hat{c}_v^2 \) otherwise. (ii) If (4) and Condition 1 are satisfied, leaders choose \(\hat{c}_v^1 \) if

\[n_1 \pi \geq \beta^v (n_1 \hat{c}_2^v - (n_1 + n_2) \hat{c}_1^v) \] (10)
and \hat{c}_2 otherwise. (iii) If (4) and Condition 2 are satisfied but Condition 1 is not satisfied, leaders choose \hat{c}_1 if

$$n_1 \pi \geq \beta^v n_2 \hat{c}_2 - \beta^p (n_1 + n_2) \hat{c}_1$$

and \hat{c}_2 otherwise.

Proof. See Appendix. □

Note that in each regime that is listed in Proposition 1, leaders face a choice between a smaller gang with more crime per member, and a large and less demanding gang. The proposition has several implications:

First of all, prestige that leaders derive from the number of members may, but need not, encourage leaders to reduce their requirement of crime. For example, because of prestige considerations, leaders may opt for a larger gang that pursues property crime, instead of a small one specializing in violent crime, as evident from case (iii).

Second, toughening the punishment for violent crime or reducing the punishment for property crime may encourage gang leaders initially pursuing violent crime to switch to property crime. To see this, notice that leaders may find it optimal to pursue violent crime only if (4) is satisfied, and that $\lambda^p (\lambda^v)$ includes marginal cost of property (violent) crime for members.

Also, changing the payoffs of different types of crime to leaders has corresponding effects. For example, reducing profits that leaders derive from property crime (that is, reducing β^p) may result in a backlash in violence if leaders change strategies to smaller and more violent gangs.

3 Unemployment and Crime

Taking into account that unemployment is usually only temporary and that a career as a member of criminal gang may exclude employment in the legal market, it is natural to interpret the outside option w to reflect the expected income available from the

3Note that leaders may choose a larger gang even if they would not derive utility from prestige. To see this, notice that if n_2 / n_1 would approach to zero, the right-hand sides of (9), (10) and (11) would each be negative. Then, a larger group would be optimal even without prestige.
legal labor market. With a given level of wages, a reduced unemployment improves the outside option w that the members face. One could expect this to be unequivocally beneficial when targeting crime. However, notice that when the valuation of gang membership is private knowledge, leaders suffer from mimicking constraint if they want to keep also members of type 1. As members of type 2 can claim to be of type 1, keeping type 1 members restricts the level of crime that can be extracted from type 2, also. Increasing the outside option w reduces relatively more crime that can be required from type 1 members, rendering keeping them relatively more expensive in terms of forgone crime. This intuition can be summarized as two propositions:

Proposition 2 If membership does not change, a decrease in unemployment results in a marginal reduction in crime, whether the gang specializes in violent or property crime.

Proof. By Proposition 1, leaders choose (5), (6), (7) or (8). The claim follows as each of these is decreasing in w, corresponding to a decrease in unemployment.

Proposition 3 An decrease in unemployment may trigger a change from a larger gang with less crime to a smaller gang with more crime, including a possible shift from a gang specializing in property crime to a smaller gang specializing in violent crime.

Proof. When the right-hand side of (9), (10) or (11) is negative, it is never optimal to choose such a strategy that leads to a smaller gang. When the right-hand side is positive, whether leaders go for a smaller gang with more low-intensity crime or a larger gang with more high-intensity crime depends on their relative valuation of different types of crime and prestige from membership. As the right-hand sides are then decreasing in w, a decrease in unemployment may trigger a switch to the smaller gang with more crime.

Propositions 2 and 3 have empirically testable implications. Proposition 2 implies that if reduced unemployment is not associated with a change in the size of gangs, then total amount of crime that leaders receive should decrease. Proposition 3 implies that if a small reduction in unemployment would lead into a change in gang membership, this would be a switch to a more hard-line gang, either with a discrete increase in the level of property or violent crime, or a switch from property to violent crime.
Together, Propositions 2 and 3 provide an economic interpretation for why empirical studies find that while unemployment tends to increase property crime, the effect on violent crime is not clear. If gangs become smaller when unemployment is reduced, then they may also become more violent. In this case, leaders replace property crime by violent crime. However, if the size of gangs does not change, then both property and violent crime are reduced when unemployment goes down.

4 Concluding Remarks

This paper suggests an explanation to the empirical regularity whereby unemployment tends to increase property crime, but not violent crime. We focus on gangs and suggest that there is a substitution effect between property crime and violent crime at work. Gang members differ in their valuation of gang membership and this is their private knowledge, while the outside option of gang members reflects observable labor market situation, and is negatively linked to unemployment. Members with high valuation can always mimic those with lower valuation. Thus, gang leaders have to choose a common norm of crime to all members who are identical in their observable characteristics, including the outside option. A reduction in unemployment makes the mimicking effect more severe. The reason is that reduced unemployment improves the outside option for both the members with low valuation of gang membership and those with high valuation. The improved outside option reduces the willingness to pay for gang membership for both types, the reduction being relatively larger for members with a lower valuation. As a result, it may be optimal for leaders to forgo membership benefits from those with low valuation of membership, and establish a higher level of requirement that only those with high valuation are willing to satisfy. Hence, a reduction in unemployment may cause a move towards smaller and more violent gangs, thus increasing violent crime.

Our results should not be interpreted as an advice not to reduce unemployment, in fear of this boosting gang violence. Instead, they highlight the need to properly study violent gangs, in order to anticipate whether such problems are likely to arise. Social policies that reduce unemployment may backfire by resulting in smaller and more criminal gangs. As a result, policing and social policies may, under certain circumstances,
be complements rather than substitutes. In order to cancel the backfiring effect, re-
duced unemployment may actually call for more rather than less policing in previously
troubled neighborhoods.

Our finding is connected to the insight by Mansour et al. (2006) who find that a
tougher crime deterrence may increase the number of gangs. In their model, policing
targets more efficiently large gangs. The potential for backfiring results when tougher
policing causes large cartels to break into smaller gangs that cannot coordinate to
restricting the amount of drugs sold to the level that would maximize the profits of
a monopoly cartel. However, we find that the backfiring effect need not require that
the number of gangs changes, or that the gangs would coordinate on the amount of
criminal activity.

Our results also imply a need for an integrated judicial policy: too tough penal-
ties for property crime may backfire by resulting in more violent crime. Similarly,
reducing the prestige that leaders derive from membership may backfire by hardening
their stance. In addition to gang crime, such a mechanism may help to explain the
radicalization of ideological, ethnic or religious groups under certain circumstances.

We presented our analysis using a simple model in which the marginal benefit of
the two types of crime to leaders is constant. The analysis could be straightforwardly
generalized to allow for several types of crimes, each with its own payoffs and costs.
By varying the costs of different crimes, society can choose which crimes it suffers.
Furthermore, changes in unemployment and other forms of outside option affect the
trade-offs available.

References

ket Programs in Turbulent Times”, forthcoming in the Journal of the European
Economic Association.

APPENDIX

Proof of Lemma 1. (1) Let us first analyze an arbitrary positive level \bar{c}^v of violent crime, in case $c^v = 0$. The utility cost is for a gang member $\lambda^v \bar{c}^v$. A corresponding utility cost would arise from increasing the amount of property crime by $\bar{c}^v \lambda^v / \lambda^p$. The utility that the gang leader would receive from violent crime \bar{c}^v is $\beta^v \bar{c}^v$. The utility from replacing this by property crime would be $\beta^p \bar{c}^v \lambda^v / \lambda^p$. The utility from property crime exceeds that from violent crime if $\beta^v < \lambda^v \lambda^p \beta^p$, and they are equal if $\beta^v = \lambda^v \lambda^p \beta^p$. Remembering the assumption that in case of indifference gang leader requires property crime, a necessary condition for it being profitable to require any positive amount of violent crime is that $\beta^v > \frac{\lambda^v \lambda^p \beta^p}{\lambda^v}$. 2) When $c^v > 0$, one has also to take into account the participation constraint of potential members. A necessary condition for it being optimal to require violent crime is that at least members who value membership most (i.e., members of type 2) are willing to stay at least if no property crime is required in addition to c^v, giving as condition $\alpha_2 - \lambda^v c^v \geq w$. ■

Proof of Lemma 2. Make a counterassumption that the gang leaders would require a strictly positive level of both types of crime. A necessary condition for this
is that $\alpha_2 \geq w + \lambda^w \omega^w$. Otherwise, requiring a positive level of violent crime cannot be optimal as there would be no members. Assume next that this holds. If $\beta^v < \frac{\lambda^v}{\lambda^p} \beta^p$, then requiring a positive level of violent crime cannot be optimal by Lemma 1. On the other hand, if $\beta^v > \frac{\lambda^v}{\lambda^p} \beta^p$ then it would be optimal to stop requiring property crime and increase the requirement of violent crime so that the total burden on members does not change. This leaves the case in which $\beta^v = \frac{\lambda^v}{\lambda^p} \beta^p$. In this case, leaders would receive the same utility by dropping the requirement of violent crime and replacing this by increasing the requirement by property crime so that the utility of members does not change. This completes the proof that leaders never strictly prefer requiring a positive level of both types of crime. ■

Proof of Proposition 1. We first show that it is never optimal for leaders to choose any other level of crime than those specified in equations (5) to (8). If leaders would choose a level above either (6) and (8), no members would stay and thus reducing the level of crime to either of these levels would improve leaders’ utility. If leaders would require a level of violence (property crime) below (6) ((8)) but above (5) ((7)), then leaders could increase the requirement to the level (6) ((8)) without causing any members to leave. Correspondingly, if leaders would require a level of violence (property crime) below (5) ((7)), then leaders could increase the requirement to this level without causing any members to leave. (i) If (4) is not satisfied, it is not profitable for leaders to require violence. If Condition 2 is not satisfied, leaders cannot require violence as they would then lose all members. In either case, the choice between leaders is for utility in case of choosing (7) or (8). (ii) By (4) and Condition 1, leaders prefer to require violence and can choose as the level of violence (5) or (6). The maximization problems simplifies to choosing between these two. (iii) By (4) and Condition 2 but not Condition 1 being satisfied, leaders prefer to require violence if only members of type 2 stay, while they have to restrict to requiring property crime if also members of type 1 stay. ■